AWS Deep Learning Containers发布PyTorch 2.6.0推理专用镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,旨在简化深度学习模型的训练和部署过程。这些容器镜像集成了主流深度学习框架(如PyTorch、TensorFlow等)及其依赖项,并针对AWS基础设施进行了优化,使开发者能够快速启动和运行深度学习工作负载。
近日,AWS Deep Learning Containers项目发布了针对PyTorch 2.6.0框架的推理专用容器镜像更新。这些新版本镜像基于Ubuntu 22.04操作系统,支持Python 3.12环境,为开发者提供了最新的PyTorch推理环境。
镜像版本概览
本次发布的PyTorch推理镜像包含两个主要版本:
-
CPU优化版本:适用于仅需CPU计算的推理场景,镜像标签为
2.6.0-cpu-py312-ubuntu22.04-sagemaker-v1.5。该版本包含了PyTorch 2.6.0的CPU版本及其相关依赖。 -
GPU加速版本:针对需要GPU加速的推理任务,基于CUDA 12.4工具包构建,镜像标签为
2.6.0-gpu-py312-cu124-ubuntu22.04-sagemaker-v1.5。此版本充分利用了NVIDIA GPU的计算能力,适合高性能推理场景。
关键特性与组件
这两个版本的镜像都包含了一系列重要的Python包和系统依赖:
- 核心框架:PyTorch 2.6.0(CPU或CUDA 12.4版本)
- 配套工具:TorchServe 0.12.0(模型服务框架)、TorchModelArchiver(模型打包工具)
- 数据处理:NumPy 2.2.3、Pandas 2.2.3、OpenCV 4.11.0
- 机器学习工具:scikit-learn 1.6.1、SciPy 1.15.1
- AWS集成:boto3 1.36.21、awscli 1.37.21(用于与AWS服务交互)
- 系统工具:MKL 2025.0.1(数学核心库)、Cython 3.0.12
GPU版本额外包含了CUDA 12.4相关的库文件,如cuBLAS和cuDNN,这些库对于GPU加速计算至关重要。
适用场景与优势
这些预构建的PyTorch推理镜像特别适合以下场景:
- 模型部署:快速部署训练好的PyTorch模型到生产环境,无需手动配置复杂的依赖关系。
- SageMaker集成:专为Amazon SageMaker优化,可以无缝集成到SageMaker的模型部署流程中。
- 性能优化:预配置了MKL等数学库,确保计算性能最优。
- 版本一致性:确保开发环境和生产环境使用完全相同的依赖版本,避免"在我机器上能运行"的问题。
技术细节
对于需要深入了解的开发者,值得注意的技术细节包括:
- 镜像基于Ubuntu 22.04 LTS构建,提供了长期稳定的基础操作系统支持。
- 使用Python 3.12作为默认Python环境,支持最新的Python特性。
- 包含了完整的PyTorch生态系统工具链,如TorchServe和TorchModelArchiver,方便模型服务化。
- 预装了常用的数据科学和机器学习库,开箱即用。
- 针对AWS环境优化了网络和存储配置,确保在云环境中表现最佳。
总结
AWS Deep Learning Containers的这次更新为PyTorch用户带来了最新的2.6.0框架支持,同时保持了与AWS生态系统的紧密集成。无论是需要CPU还是GPU加速的推理场景,这些预构建的容器镜像都能显著降低部署复杂度,加速模型上线流程。对于已经在使用Amazon SageMaker或计划在AWS上部署PyTorch模型的企业和开发者来说,这些镜像提供了可靠且高效的基础设施解决方案。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00