AWS SDK for Pandas中chunked参数内存优化失效问题分析
2025-06-16 07:10:57作者:鲍丁臣Ursa
在AWS SDK for Pandas项目中,用户报告了一个关于wr.s3.read_parquet函数chunked参数的内存优化问题。本文将深入分析这一问题,并提供解决方案。
问题现象
当使用AWS SDK for Pandas读取大型Parquet文件时,即使设置了chunked=True或指定了chunked=10000,内存仍然会被完全占用。用户拥有32GB RAM,但无法成功加载包含100万行数据的单个Parquet文件。
技术背景
Parquet是一种列式存储格式,通常用于大数据处理。AWS SDK for Pandas提供了read_parquet函数来从S3读取这种格式的数据。chunked参数的设计初衷是将大型文件分块读取,避免一次性加载全部数据到内存中。
问题根源
经过分析,这个问题可能由以下几个原因导致:
-
元数据预加载:Parquet文件在读取前需要加载元数据信息,对于特别大的文件,这部分操作可能已经消耗了大量内存
-
底层实现限制:某些版本的PyArrow或fastparquet引擎在分块读取时可能存在内存管理问题
-
文件结构特性:如果Parquet文件使用了复杂的压缩算法或包含大量嵌套结构,即使分块读取也可能需要较多内存
解决方案
方案一:使用S3 Select功能
AWS SDK for Pandas支持S3 Select功能,可以在服务器端进行数据过滤,只返回需要的列和行。这种方式可以显著减少客户端内存使用。
import awswrangler as wr
# 使用SQL表达式过滤数据
df = wr.s3.select_query(
sql="SELECT * FROM s3object s LIMIT 10000",
path="s3://your-bucket/your-file.parquet",
input_serialization="Parquet",
input_serialization_params={}
)
方案二:优化读取参数
尝试调整以下参数组合:
for chunk in wr.s3.read_parquet(
s3_path,
chunked=10000,
use_threads=False, # 禁用多线程可能减少内存使用
pyarrow_additional_kwargs={"memory_map": False} # 禁用内存映射
):
process_chunk(chunk)
方案三:分批处理文件
如果可能,考虑将大文件拆分为多个小文件,然后逐个处理:
files = wr.s3.list_objects("s3://your-bucket/your-folder/")
for file in files:
df = wr.s3.read_parquet(file)
process_data(df)
最佳实践建议
- 监控内存使用情况,使用
memory_profiler等工具分析内存消耗点 - 升级到最新版本的AWS SDK for Pandas和相关依赖(PyArrow等)
- 考虑使用Dask等分布式计算框架处理超大规模数据
- 优化Parquet文件结构,合理设置行组大小和压缩算法
通过以上方法,可以有效解决大Parquet文件读取时的内存问题,实现高效的数据处理。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134