AWS SDK for Pandas中chunked参数内存优化失效问题分析
2025-06-16 07:03:08作者:鲍丁臣Ursa
在AWS SDK for Pandas项目中,用户报告了一个关于wr.s3.read_parquet函数chunked参数的内存优化问题。本文将深入分析这一问题,并提供解决方案。
问题现象
当使用AWS SDK for Pandas读取大型Parquet文件时,即使设置了chunked=True或指定了chunked=10000,内存仍然会被完全占用。用户拥有32GB RAM,但无法成功加载包含100万行数据的单个Parquet文件。
技术背景
Parquet是一种列式存储格式,通常用于大数据处理。AWS SDK for Pandas提供了read_parquet函数来从S3读取这种格式的数据。chunked参数的设计初衷是将大型文件分块读取,避免一次性加载全部数据到内存中。
问题根源
经过分析,这个问题可能由以下几个原因导致:
-
元数据预加载:Parquet文件在读取前需要加载元数据信息,对于特别大的文件,这部分操作可能已经消耗了大量内存
-
底层实现限制:某些版本的PyArrow或fastparquet引擎在分块读取时可能存在内存管理问题
-
文件结构特性:如果Parquet文件使用了复杂的压缩算法或包含大量嵌套结构,即使分块读取也可能需要较多内存
解决方案
方案一:使用S3 Select功能
AWS SDK for Pandas支持S3 Select功能,可以在服务器端进行数据过滤,只返回需要的列和行。这种方式可以显著减少客户端内存使用。
import awswrangler as wr
# 使用SQL表达式过滤数据
df = wr.s3.select_query(
sql="SELECT * FROM s3object s LIMIT 10000",
path="s3://your-bucket/your-file.parquet",
input_serialization="Parquet",
input_serialization_params={}
)
方案二:优化读取参数
尝试调整以下参数组合:
for chunk in wr.s3.read_parquet(
s3_path,
chunked=10000,
use_threads=False, # 禁用多线程可能减少内存使用
pyarrow_additional_kwargs={"memory_map": False} # 禁用内存映射
):
process_chunk(chunk)
方案三:分批处理文件
如果可能,考虑将大文件拆分为多个小文件,然后逐个处理:
files = wr.s3.list_objects("s3://your-bucket/your-folder/")
for file in files:
df = wr.s3.read_parquet(file)
process_data(df)
最佳实践建议
- 监控内存使用情况,使用
memory_profiler等工具分析内存消耗点 - 升级到最新版本的AWS SDK for Pandas和相关依赖(PyArrow等)
- 考虑使用Dask等分布式计算框架处理超大规模数据
- 优化Parquet文件结构,合理设置行组大小和压缩算法
通过以上方法,可以有效解决大Parquet文件读取时的内存问题,实现高效的数据处理。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1