Databento Python 客户端库使用教程
2024-09-12 01:23:10作者:柯茵沙
1. 项目目录结构及介绍
Databento Python 客户端库的目录结构如下:
databento-python/
├── examples/
├── notebooks/
├── scripts/
├── tests/
├── .gitattributes
├── .gitignore
├── CHANGELOG.md
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── LICENSE
├── README.md
├── pyproject.toml
目录结构介绍
- examples/: 包含各种示例代码,展示了如何使用 Databento Python 客户端库。
- notebooks/: 包含 Jupyter Notebook 文件,用于交互式学习和演示。
- scripts/: 包含一些实用脚本,可能用于数据处理或其他自动化任务。
- tests/: 包含项目的测试代码,确保库的各个功能正常运行。
- .gitattributes: Git 属性配置文件,用于指定文件的属性。
- .gitignore: Git 忽略文件配置,指定哪些文件或目录不需要被 Git 管理。
- CHANGELOG.md: 记录项目的变更历史,包括新功能、修复的 bug 等。
- CODE_OF_CONDUCT.md: 项目的行为准则,规定了参与者的行为规范。
- CONTRIBUTING.md: 贡献指南,指导开发者如何为项目贡献代码。
- LICENSE: 项目的开源许可证,通常为 Apache 2.0 许可证。
- README.md: 项目的介绍文档,通常包含项目的基本信息、安装方法、使用示例等。
- pyproject.toml: Python 项目的配置文件,定义了项目的依赖、构建工具等。
2. 项目的启动文件介绍
Databento Python 客户端库没有明确的“启动文件”,因为它的主要功能是通过导入库并调用其 API 来实现的。不过,你可以在 examples/ 目录下找到一些启动示例代码,例如:
import databento as db
client = db.Historical('YOUR_API_KEY')
data = client.timeseries.get_range(
dataset='GLBX.MDP3',
symbols='ES.FUT',
stype_in='parent',
start='2022-06-10T14:30',
end='2022-06-10T14:40'
)
data.replay(callback=print)
这个示例展示了如何使用 databento 库来获取历史数据并进行市场回放。
3. 项目的配置文件介绍
Databento Python 客户端库的配置主要通过 pyproject.toml 文件进行管理。以下是该文件的部分内容:
[tool.poetry]
name = "databento"
version = "0.41.0"
description = "The official Python client library for Databento"
authors = ["Databento <support@databento.com>"]
license = "Apache-2.0"
[tool.poetry.dependencies]
python = "^3.8"
aiohttp = "^3.8.3"
databento-dbn = "0.20.1"
numpy = ">=1.23.5"
pandas = ">=1.5.3"
pip-system-certs = ">=4.0" # Windows only
pyarrow = ">=13.0.0"
requests = ">=2.24.0"
zstandard = ">=0.21.0"
[tool.poetry.dev-dependencies]
pytest = "^6.2.5"
配置文件介绍
- [tool.poetry]: 定义了项目的元数据,如名称、版本、描述、作者和许可证。
- [tool.poetry.dependencies]: 列出了项目的主要依赖项,包括 Python 版本、
aiohttp、databento-dbn、numpy、pandas等。 - [tool.poetry.dev-dependencies]: 列出了开发依赖项,如
pytest,用于测试和开发环境。
通过这些配置,你可以确保项目在不同的环境中正确安装和运行所需的依赖项。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.32 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
245
282
React Native鸿蒙化仓库
JavaScript
272
328