Kaspa-miner 项目启动与配置教程
2025-05-17 23:09:50作者:范垣楠Rhoda
1. 项目目录结构及介绍
Kaspa-miner 项目是一个用于参与 Kaspa 网络的开源项目。项目的目录结构如下:
/.github/: 存放 GitHub Actions 工作流配置文件。/src/: 源代码目录,包含项目的核心逻辑。/plugins/: 插件目录,存放与项目相关的插件。/proto/: 原型目录,可能包含项目使用的协议定义。/integrations/: 集成目录,可能包含与其他系统或服务的集成代码。/targets/release/: 存放编译后生成的发布文件。/.gitignore: 指定 Git 忽略的文件和目录。/Cargo.toml: Rust 项目配置文件。/Cargo.lock: Cargo 锁文件,记录项目依赖的具体版本。/LICENSE-APACHE和/LICENSE-MIT: 开源协议文件。/README.md: 项目说明文件。/build.rs: 构建脚本,用于自定义项目的构建过程。
2. 项目的启动文件介绍
项目的启动文件是 kaspa-miner,这是编译后的可执行文件。在命令行中运行以下命令启动网络参与:
./kaspa-miner --mining-address kaspa:XXXXX
其中 kaspa:XXXXX 是你的 Kaspa 钱包地址,用于接收网络奖励。
启动文件支持以下选项:
-a, --mining-address <MINING_ADDRESS>: 指定奖励的接收地址。--cuda-device <CUDA_DEVICE>: 指定使用的 CUDA GPU 设备。--cuda-disable: 禁用 CUDA 工作线程。--cuda-lock-core-clocks <CUDA_LOCK_CORE_CLOCKS>: 锁定核心时钟。--cuda-lock-mem-clocks <CUDA_LOCK_MEM_CLOCKS>: 锁定内存时钟。--cuda-no-blocking-sync: 不阻塞同步操作。--cuda-power-limits <CUDA_POWER_LIMITS>: 锁定功耗限制。--cuda-workload <CUDA_WORKLOAD>: 设置 GPU 工作负载比率。-d, --debug: 启用调试日志级别。--devfund-percent <DEVFUND_PERCENT>: 设置开发基金百分比。-h, --help: 打印帮助信息。--mine-when-not-synced: 即使未同步也进行网络参与。--nonce-gen <NONCE_GEN>: 设置 nonce 生成方法。--opencl-amd-disable: 禁用 AMD 参与。--opencl-device <OPENCL_DEVICE>: 指定 OpenCL GPU 设备。--opencl-enable: 启用 OpenCL。--opencl-no-amd-binary: 禁用预编译的 AMD 内核。--opencl-platform <OPENCL_PLATFORM>: 指定 OpenCL 平台。--opencl-workload <OPENCL_WORKLOAD>: 设置 OpenCL 工作负载比率。-p, --port <PORT>: 设置 Kaspad 端口。-s, --kaspad-address <KASPAD_ADDRESS>: 设置 Kaspad 实例的 IP 地址。-t, --threads <NUM_THREADS>: 设置 CPU 参与线程数。--testnet: 使用测试网络。
3. 项目的配置文件介绍
Kaspa-miner 项目的配置主要通过命令行参数进行,并没有一个单独的配置文件。在项目根目录下,Cargo.toml 是 Rust 项目的配置文件,它定义了项目的依赖、构建选项等信息。
以下是一个 Cargo.toml 文件的示例:
[package]
name = "kaspa-miner"
version = "0.1.0"
edition = "2021"
[dependencies]
kaspa = "0.1.0"
rayon = "1.5.0"
tokio = { version = "1.0", features = ["full"] }
...
[build-dependencies]
...
[dev-dependencies]
...
该配置文件定义了项目的名称、版本和依赖项。如果需要进行更复杂的配置,可以通过修改 Cargo.toml 文件来实现。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1