Apache ECharts 实现散点图与边缘直方图的组合展示
2025-04-30 14:03:37作者:瞿蔚英Wynne
在数据可视化领域,散点图(Scatter Plot)与边缘直方图(Marginal Histogram)的组合是一种经典的多维度数据展示方式。这种组合能够同时呈现数据的分布特征和变量间的相关性,广泛应用于统计分析、机器学习等领域。Apache ECharts 作为一款强大的可视化库,同样支持这种高级图表组合的实现。
核心思路
实现散点图与边缘直方图组合的关键在于多坐标系(Grid)的协同控制。通过将主坐标系(散点图)与辅助坐标系(直方图)按比例布局,即可形成边缘直方图的视觉效果。具体技术要点如下:
-
坐标系划分
使用grid配置项定义多个矩形区域:- 主
grid用于散点图,占据中心大部分区域 - 辅助
grid用于直方图,紧贴主坐标系的边缘(如顶部/右侧)
- 主
-
数据映射同步
需确保直方图的 bin 划分与散点图的坐标轴刻度对齐,这需要通过:- 手动计算直方图分箱(binning)
- 或使用
echarts-stat扩展的 histogram 转换功能
-
视觉样式协调
通过统一配色、隐藏冗余坐标轴等方式,使组合图表呈现整体性
实现示例
option = {
grid: [
// 主坐标系(散点图)
{
right: '15%',
top: '15%',
width: '70%',
height: '70%'
},
// 顶部直方图
{
right: '15%',
top: '5%',
width: '70%',
height: '10%',
containLabel: true
},
// 右侧直方图
{
right: '5%',
top: '15%',
width: '10%',
height: '70%',
containLabel: true
}
],
xAxis: [
// 散点图X轴
{ gridIndex: 0, ... },
// 顶部直方图X轴(与散点图同步)
{ gridIndex: 1, show: false }
],
yAxis: [
// 散点图Y轴
{ gridIndex: 0, ... },
// 右侧直方图Y轴
{ gridIndex: 2, show: false }
],
series: [
// 散点图系列
{ type: 'scatter', xAxisIndex: 0, yAxisIndex: 0, ... },
// 顶部直方图系列
{ type: 'bar', xAxisIndex: 1, yAxisIndex: 1, ... },
// 右侧直方图系列
{ type: 'bar', xAxisIndex: 2, yAxisIndex: 2, ... }
]
}
进阶技巧
-
动态响应
通过resize事件监听器自动调整多grid的尺寸比例,确保在不同屏幕尺寸下的显示效果 -
交互联动
利用connect功能实现刷选(brush)等高阶交互:echarts.connect([scatterChart, histChart1, histChart2]); -
性能优化
对于大数据量场景,建议:- 对直方图数据预聚合
- 启用散点图的渐进渲染(progressive)
- 使用 WebGL 渲染器(svg-renderer)
适用场景
这种组合图表特别适合以下分析场景:
- 探索性数据分析(EDA)中的变量关系检验
- 聚类结果的可视化验证
- 数据质量检查(离群值识别等)
通过 Apache ECharts 强大的配置能力,开发者可以灵活调整各部分的显示比例、交互方式等参数,打造专业级的数据分析仪表盘。这种实现方式既保持了代码的简洁性,又提供了充分的定制空间。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178