Apache ECharts 实现散点图与边缘直方图的组合展示
2025-04-30 11:26:00作者:瞿蔚英Wynne
在数据可视化领域,散点图(Scatter Plot)与边缘直方图(Marginal Histogram)的组合是一种经典的多维度数据展示方式。这种组合能够同时呈现数据的分布特征和变量间的相关性,广泛应用于统计分析、机器学习等领域。Apache ECharts 作为一款强大的可视化库,同样支持这种高级图表组合的实现。
核心思路
实现散点图与边缘直方图组合的关键在于多坐标系(Grid)的协同控制。通过将主坐标系(散点图)与辅助坐标系(直方图)按比例布局,即可形成边缘直方图的视觉效果。具体技术要点如下:
-
坐标系划分
使用grid配置项定义多个矩形区域:- 主
grid用于散点图,占据中心大部分区域 - 辅助
grid用于直方图,紧贴主坐标系的边缘(如顶部/右侧)
- 主
-
数据映射同步
需确保直方图的 bin 划分与散点图的坐标轴刻度对齐,这需要通过:- 手动计算直方图分箱(binning)
- 或使用
echarts-stat扩展的 histogram 转换功能
-
视觉样式协调
通过统一配色、隐藏冗余坐标轴等方式,使组合图表呈现整体性
实现示例
option = {
grid: [
// 主坐标系(散点图)
{
right: '15%',
top: '15%',
width: '70%',
height: '70%'
},
// 顶部直方图
{
right: '15%',
top: '5%',
width: '70%',
height: '10%',
containLabel: true
},
// 右侧直方图
{
right: '5%',
top: '15%',
width: '10%',
height: '70%',
containLabel: true
}
],
xAxis: [
// 散点图X轴
{ gridIndex: 0, ... },
// 顶部直方图X轴(与散点图同步)
{ gridIndex: 1, show: false }
],
yAxis: [
// 散点图Y轴
{ gridIndex: 0, ... },
// 右侧直方图Y轴
{ gridIndex: 2, show: false }
],
series: [
// 散点图系列
{ type: 'scatter', xAxisIndex: 0, yAxisIndex: 0, ... },
// 顶部直方图系列
{ type: 'bar', xAxisIndex: 1, yAxisIndex: 1, ... },
// 右侧直方图系列
{ type: 'bar', xAxisIndex: 2, yAxisIndex: 2, ... }
]
}
进阶技巧
-
动态响应
通过resize事件监听器自动调整多grid的尺寸比例,确保在不同屏幕尺寸下的显示效果 -
交互联动
利用connect功能实现刷选(brush)等高阶交互:echarts.connect([scatterChart, histChart1, histChart2]); -
性能优化
对于大数据量场景,建议:- 对直方图数据预聚合
- 启用散点图的渐进渲染(progressive)
- 使用 WebGL 渲染器(svg-renderer)
适用场景
这种组合图表特别适合以下分析场景:
- 探索性数据分析(EDA)中的变量关系检验
- 聚类结果的可视化验证
- 数据质量检查(离群值识别等)
通过 Apache ECharts 强大的配置能力,开发者可以灵活调整各部分的显示比例、交互方式等参数,打造专业级的数据分析仪表盘。这种实现方式既保持了代码的简洁性,又提供了充分的定制空间。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
309
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.84 K
React Native鸿蒙化仓库
JavaScript
259
322