Apache ECharts 实现散点图与边缘直方图的组合展示
2025-04-30 14:03:37作者:瞿蔚英Wynne
在数据可视化领域,散点图(Scatter Plot)与边缘直方图(Marginal Histogram)的组合是一种经典的多维度数据展示方式。这种组合能够同时呈现数据的分布特征和变量间的相关性,广泛应用于统计分析、机器学习等领域。Apache ECharts 作为一款强大的可视化库,同样支持这种高级图表组合的实现。
核心思路
实现散点图与边缘直方图组合的关键在于多坐标系(Grid)的协同控制。通过将主坐标系(散点图)与辅助坐标系(直方图)按比例布局,即可形成边缘直方图的视觉效果。具体技术要点如下:
-
坐标系划分
使用grid配置项定义多个矩形区域:- 主
grid用于散点图,占据中心大部分区域 - 辅助
grid用于直方图,紧贴主坐标系的边缘(如顶部/右侧)
- 主
-
数据映射同步
需确保直方图的 bin 划分与散点图的坐标轴刻度对齐,这需要通过:- 手动计算直方图分箱(binning)
- 或使用
echarts-stat扩展的 histogram 转换功能
-
视觉样式协调
通过统一配色、隐藏冗余坐标轴等方式,使组合图表呈现整体性
实现示例
option = {
grid: [
// 主坐标系(散点图)
{
right: '15%',
top: '15%',
width: '70%',
height: '70%'
},
// 顶部直方图
{
right: '15%',
top: '5%',
width: '70%',
height: '10%',
containLabel: true
},
// 右侧直方图
{
right: '5%',
top: '15%',
width: '10%',
height: '70%',
containLabel: true
}
],
xAxis: [
// 散点图X轴
{ gridIndex: 0, ... },
// 顶部直方图X轴(与散点图同步)
{ gridIndex: 1, show: false }
],
yAxis: [
// 散点图Y轴
{ gridIndex: 0, ... },
// 右侧直方图Y轴
{ gridIndex: 2, show: false }
],
series: [
// 散点图系列
{ type: 'scatter', xAxisIndex: 0, yAxisIndex: 0, ... },
// 顶部直方图系列
{ type: 'bar', xAxisIndex: 1, yAxisIndex: 1, ... },
// 右侧直方图系列
{ type: 'bar', xAxisIndex: 2, yAxisIndex: 2, ... }
]
}
进阶技巧
-
动态响应
通过resize事件监听器自动调整多grid的尺寸比例,确保在不同屏幕尺寸下的显示效果 -
交互联动
利用connect功能实现刷选(brush)等高阶交互:echarts.connect([scatterChart, histChart1, histChart2]); -
性能优化
对于大数据量场景,建议:- 对直方图数据预聚合
- 启用散点图的渐进渲染(progressive)
- 使用 WebGL 渲染器(svg-renderer)
适用场景
这种组合图表特别适合以下分析场景:
- 探索性数据分析(EDA)中的变量关系检验
- 聚类结果的可视化验证
- 数据质量检查(离群值识别等)
通过 Apache ECharts 强大的配置能力,开发者可以灵活调整各部分的显示比例、交互方式等参数,打造专业级的数据分析仪表盘。这种实现方式既保持了代码的简洁性,又提供了充分的定制空间。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136