DeepKE项目关系抽取任务的数据准备与使用指南
2025-06-17 12:37:20作者:宣聪麟
关系抽取任务的数据准备
在DeepKE项目中,关系抽取任务需要准备三种数据集:训练集、验证集和测试集。这些数据集需要按照特定格式组织,通常采用JSON文件格式存储。每个数据集文件应包含文本样本以及对应的实体和关系标注信息。
数据格式示例如下:
{
"text": "马克·吐温是美国著名作家",
"relation": "国籍",
"head": {"word": "马克·吐温", "type": "人物"},
"tail": {"word": "美国", "type": "国家"}
}
数据集的存放与配置
用户可以将这些JSON文件存放在任意路径下,但需要在项目的预处理配置文件中明确指定路径。配置文件通常包含数据路径、预处理参数等关键信息,确保模型能够正确找到并加载这些数据。
数据预处理流程
DeepKE项目提供了完整的数据预处理流程:
- 原始数据转换为标准格式
- 文本分词和向量化
- 实体和关系标签编码
- 数据集划分(训练/验证/测试)
模型训练与预测
训练阶段,模型会学习从给定的实体对中预测它们之间的关系。值得注意的是,关系抽取任务需要事先知道头尾实体的位置信息,这与端到端的关系抽取有所不同。
对于预测阶段,当前版本主要支持单条文本输入。如果用户需要批量处理文件数据,可以自行修改预测脚本,实现文件读取和逐条预测功能。
进阶应用建议
对于希望实现端到端关系抽取的用户,建议先进行命名实体识别(NER)任务,识别出文本中的实体后再进行关系抽取。DeepKE项目也提供了相应的实体识别模块,可以组合使用构建完整的信息抽取流程。
通过合理准备数据和理解模型的工作机制,用户可以有效地利用DeepKE项目进行各种复杂场景下的关系抽取任务。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
526
3.72 K
Ascend Extension for PyTorch
Python
333
397
暂无简介
Dart
767
190
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
879
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
168
React Native鸿蒙化仓库
JavaScript
302
352
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
749
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246