Dynamo项目中TP4并行配置在disagg_router模式下的内存优化实践
2025-06-17 05:24:23作者:胡易黎Nicole
背景介绍
在大型语言模型(LLM)推理服务部署中,Dynamo项目提供了一种高效的分布式推理框架。本文针对32B参数规模、32k最大序列长度的模型在16块A100 40GB GPU上的部署实践,重点分析了Tensor Parallelism 4(TP4)配置在disagg_router模式下出现的内存问题及解决方案。
问题现象
在采用disagg_router配置时,系统出现了CUDA内存不足的错误。错误日志显示,虽然GPU总容量为39.39GiB,但实际可用内存仅剩10.38MiB,导致模型加载失败。值得注意的是,相同的TP4配置在agg_router模式下能够正常工作。
技术分析
内存分配机制
在Dynamo的分布式推理架构中,disagg_router模式将工作负载分离到不同的工作节点:
- VllmWorker负责解码阶段
- PrefillWorker负责预填充阶段
每个工作节点都需要独立加载模型参数,因此必须正确配置各节点的并行策略。
关键配置项
原始配置中遗漏了PrefillWorker的tensor-parallel-size参数,导致系统默认使用TP1(单卡)模式加载模型。对于32B参数的模型,单卡加载显然会超出40GB显存容量。
解决方案
通过完善PrefillWorker的配置,显式指定TP4并行策略:
PrefillWorker:
model: my_model
kv-transfer-config: '{"kv_connector":"DynamoNixlConnector"}'
block-size: 64
max-model-len: 32768
max-num-batched-tokens: 32768
tensor-parallel-size: 4 # 关键配置项
gpu-memory-utilization: 0.8
ServiceArgs:
workers: 1
resources:
gpu: 4
优化建议
- 内存利用率调整:将gpu-memory-utilization从0.5提升到0.8,在保证稳定性的前提下提高资源利用率
- 配置一致性检查:确保VllmWorker和PrefillWorker的并行配置匹配
- 资源监控:部署前使用nvidia-smi工具监控各GPU内存使用情况
- 渐进式加载:对于超大模型,考虑分阶段加载策略
经验总结
在Dynamo项目的分布式部署中,disagg_router模式提供了更灵活的工作负载分配能力,但也带来了配置复杂度的提升。工程师需要特别注意:
- 所有涉及模型加载的工作节点都必须正确配置并行策略
- TP参数需要与分配的GPU数量匹配
- 不同组件的内存配置需要协调一致
通过这次实践,我们验证了32B参数模型在16块A100 GPU上使用TP4并行策略的可行性,为类似规模的模型部署提供了可靠参考。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
410
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
251