HAvatar开源项目教程
2025-05-21 04:17:09作者:廉皓灿Ida
1. 项目介绍
HAvatar 是一个开源项目,它通过面部模型条件化的神经辐射场(Facial Model Conditioned Neural Radiance Field)技术,创建高质量的3D人头Avatar。该项目结合了神经辐射场(NeRF)的表现力和参数化模板的先验信息,旨在解决在轻量级设置下建模可动画化3D人头Avatar的问题。HAvatar在动态人头外观的高分辨率、真实感和视图一致性合成方面取得了优异的性能。
2. 项目快速启动
环境准备
首先,确保您的系统中已经安装了以下依赖:
- Python 3.x
- PyTorch
- NumPy
- OpenCV
克隆项目
git clone https://github.com/XChenZ/havatar.git
cd havatar
安装依赖
在项目根目录下运行以下命令安装Python依赖:
pip install -r requirements.txt
准备数据集
项目提供了一个处理过的示例数据集。请将其下载并解压到项目目录下的data/demo
文件夹中。
# 示例数据集下载地址(此处不提供实际链接)
# 下载后解压到 data/demo
训练模型
项目分为两个训练阶段:
第一阶段
python train_avatar.py --datadir data/demo --logdir logs/demo
训练完成后(大约训练20000步),继续第二阶段训练。
第二阶段
python train_avatarHD.py --datadir data/demo --logdir logs/demo/HD --ckpt logs/demo/checkpoint200000.ckpt
为了加速收敛,项目提供了预训练的图像转换模块,请将其下载并放置在pretrained_models
文件夹中。
动画制作
项目提供了一个预训练的单目人头Avatar的checkpoint,请下载并将其放入logs/demo/HD
文件夹。
重新演绎
python avatarHD_reenactment.py --torch_test --savedir results/demo/self-recon --ckpt logs/demo/HD/latest.pt --split data/demo/sv_v31_all.json
跨重新演绎
# 预处理数据集
cd data_preprocessing
python fit_video.py --video_path path/to/your/actor_video --base_dir data/actor --avatar_tracking_dir data/demo
python avatarHD_reenactment.py --savedir results/demo/cross-reenact --ckpt logs/demo/HD/latest.pt --split data/actor/drive_demo.json
3. 应用案例和最佳实践
-
案例1:创建个人Avatar
使用HAvatar,您可以创建一个高度逼真的个人3D头像,用于社交媒体、游戏或其他虚拟现实应用。 -
案例2:虚拟直播
利用HAvatar技术,可以在直播中替换主播的头像,实现虚拟直播效果。 -
最佳实践
为了获得最佳效果,请确保使用高质量的视频和数据集进行训练。在训练过程中,适当的超参数调整也是非常重要的。
4. 典型生态项目
-
Nerface
一个开源项目,专注于使用NeRF技术创建高质量的人头模型。 -
StyleAvatar
一个开源项目,结合了风格迁移和Avatar创建技术,用于生成个性化的3D头像。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0382- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
48
259

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
348
381

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
516

React Native鸿蒙化仓库
C++
179
263

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0