HAvatar开源项目教程
2025-05-21 13:00:20作者:廉皓灿Ida
1. 项目介绍
HAvatar 是一个开源项目,它通过面部模型条件化的神经辐射场(Facial Model Conditioned Neural Radiance Field)技术,创建高质量的3D人头Avatar。该项目结合了神经辐射场(NeRF)的表现力和参数化模板的先验信息,旨在解决在轻量级设置下建模可动画化3D人头Avatar的问题。HAvatar在动态人头外观的高分辨率、真实感和视图一致性合成方面取得了优异的性能。
2. 项目快速启动
环境准备
首先,确保您的系统中已经安装了以下依赖:
- Python 3.x
- PyTorch
- NumPy
- OpenCV
克隆项目
git clone https://github.com/XChenZ/havatar.git
cd havatar
安装依赖
在项目根目录下运行以下命令安装Python依赖:
pip install -r requirements.txt
准备数据集
项目提供了一个处理过的示例数据集。请将其下载并解压到项目目录下的data/demo文件夹中。
# 示例数据集下载地址(此处不提供实际链接)
# 下载后解压到 data/demo
训练模型
项目分为两个训练阶段:
第一阶段
python train_avatar.py --datadir data/demo --logdir logs/demo
训练完成后(大约训练20000步),继续第二阶段训练。
第二阶段
python train_avatarHD.py --datadir data/demo --logdir logs/demo/HD --ckpt logs/demo/checkpoint200000.ckpt
为了加速收敛,项目提供了预训练的图像转换模块,请将其下载并放置在pretrained_models文件夹中。
动画制作
项目提供了一个预训练的单目人头Avatar的checkpoint,请下载并将其放入logs/demo/HD文件夹。
重新演绎
python avatarHD_reenactment.py --torch_test --savedir results/demo/self-recon --ckpt logs/demo/HD/latest.pt --split data/demo/sv_v31_all.json
跨重新演绎
# 预处理数据集
cd data_preprocessing
python fit_video.py --video_path path/to/your/actor_video --base_dir data/actor --avatar_tracking_dir data/demo
python avatarHD_reenactment.py --savedir results/demo/cross-reenact --ckpt logs/demo/HD/latest.pt --split data/actor/drive_demo.json
3. 应用案例和最佳实践
-
案例1:创建个人Avatar
使用HAvatar,您可以创建一个高度逼真的个人3D头像,用于社交媒体、游戏或其他虚拟现实应用。 -
案例2:虚拟直播
利用HAvatar技术,可以在直播中替换主播的头像,实现虚拟直播效果。 -
最佳实践
为了获得最佳效果,请确保使用高质量的视频和数据集进行训练。在训练过程中,适当的超参数调整也是非常重要的。
4. 典型生态项目
-
Nerface
一个开源项目,专注于使用NeRF技术创建高质量的人头模型。 -
StyleAvatar
一个开源项目,结合了风格迁移和Avatar创建技术,用于生成个性化的3D头像。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C040
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
274
暂无简介
Dart
694
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869