【亲测免费】 Chaos Mesh安装与配置完全指南:搭建你的云原生混沌工程平台
项目基础介绍与主要编程语言
Chaos Mesh 是一款由 PingCAP 开发并维护的开源混沌工程平台,专门设计用于在 Kubernetes 环境中实施故障注入。它帮助开发者和运维人员通过模拟各类异常情况来提升系统的健壮性,从而确保在真实的开发、测试及生产环境中系统的稳定性。Chaos Mesh 基于 Apache 2.0 许可证发布,目前是 Cloud Native Computing Foundation(CNCF)的孵化项目之一。该项目核心部分采用 Go语言 编写,并结合了 Kubernetes 的强大资源管理能力,提供了图形化的操作界面,降低了混沌工程实践的技术门槛。
关键技术和框架
- Kubernetes (K8s):作为部署基础,Chaos Mesh利用Kubernetes的自定义资源定义(CRD)来创建多种类型的混沌对象。
- CustomResourceDefinitions (CRDs):定义如PodChaos、NetworkChaos等,允许用户定义和控制特定类型的一系列故障注入实验。
- Web UI:基于前端技术栈构建,提供直观的操作界面,简化混沌实验的设计和监控。
- Golang:主体开发语言,保证了高效率和跨平台的特性。
- 混沌控制器:包括Chaos Controller Manager和Chaos Daemon,分别负责混沌实验的管理和具体故障的实施。
安装与配置步骤
准备工作
- 环境要求:确保你的机器上已安装Docker和Kubernetes(建议版本1.16+),并且Kubectl已正确配置以连接到集群。
- Git工具:安装Git,以便克隆项目代码。
安装步骤
-
克隆项目:
git clone https://github.com/pingcap/chaos-mesh.git -
安装Helm(如果尚未安装):
- 对于大多数Linux发行版和MacOS,可以使用包管理器进行安装。详细安装命令参见Helm官方文档。
-
添加Chaos Mesh的Helm仓库:
helm repo add chaos-mesh https://charts.chaos-mesh.org helm repo update -
安装Chaos Mesh: 使用默认配置安装是最简单的方式,可以通过以下命令执行:
helm install chaos-mesh chaos-mesh/chaos-mesh这将自动处理所有必要的CRDs和其他依赖项。
-
验证安装: 验证Chaos Mesh是否成功安装,可以在Kubernetes集群中运行以下命令查看其部署情况:
kubectl get pods --all-namespaces | grep chaos-mesh应该能看到类似
chaos-dashboard和chaos-controller-manager的相关POD处于Running状态。 -
访问Web UI: 在完成安装后,Chaos Mesh会提供一个Web UI,你可以通过服务端点访问。首先,找到UI的服务地址:
kubectl -n chaos-testing get svc chaos-dashboard然后,通过NodePort或其他Kubernetes提供的访问方式(如Ingress,如果已经配置)访问此服务。
配置细节
对于更高级的配置需求,比如修改默认的命名空间、资源请求限制等,可以直接编辑Helm的值文件,例如helm install chaos-mesh chaos-mesh/chaos-mesh --set dashboard.service.type=LoadBalancer来改变dashboard的服务类型为LoadBalancer。
至此,您已经完成了Chaos Mesh的基本安装与配置,接下来就可以开始探索和设计您的混沌实验,加强系统在极端条件下的抗压能力和稳定性了。
请注意,对于生产环境,建议详细阅读官方文档以了解每一个配置项的具体含义和最佳实践,确保稳定性和安全性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00