Apache DevLake 使用外部 Grafana 时 DORA 仪表板不显示问题解析
2025-06-30 17:05:50作者:齐冠琰
问题背景
在使用 Apache DevLake 项目时,许多团队会选择将 DevLake 与现有的 Grafana 监控系统集成。然而,当配置使用外部 Grafana 服务时,用户可能会遇到 DORA 仪表板无法正常显示的问题。本文将深入分析这一问题的原因,并提供完整的解决方案。
核心问题分析
当用户通过 Helm Chart 部署 DevLake 并配置使用外部 Grafana 时,DORA 仪表板无法自动显示在 Grafana 中。这通常涉及以下几个关键因素:
-
配置参数不完整:虽然用户设置了
grafana.enabled=false和grafana.external.url,但可能缺少其他必要的配置项。 -
网络连接问题:外部 Grafana 服务可能位于受限制的网络环境中,DevLake 组件无法与其建立有效连接。
-
数据源配置缺失:DORA 仪表板依赖特定的数据源,这些数据源需要预先在 Grafana 中正确配置。
详细解决方案
1. 完整的 Helm 配置
确保 Helm values.yaml 文件中包含以下关键配置:
grafana:
enabled: false
external:
url: "https://your-grafana.domain.com"
adminPassword: "your-admin-password"
envFromSecrets:
- name: "devlake-mysql-auth"
env:
TZ: "UTC"
2. 网络访问控制
检查并确保以下网络配置正确:
- 确认 DevLake 部署所在的网络能够访问外部 Grafana 服务
- 检查防火墙规则是否允许从 DevLake 集群到 Grafana 的流量
- 验证 Grafana 的负载均衡器是否配置了正确的访问控制规则
3. 数据源与仪表板配置
DORA 仪表板正常工作需要以下数据源:
- 部署数据:来自 CI/CD 系统如 Jenkins、GitLab CI 或 GitHub Actions
- 拉取请求数据:来自代码仓库如 GitHub、GitLab 或 Bitbucket
- 事件数据:来自问题跟踪系统如 Jira、GitHub Issues 等
4. 验证与调试
建议使用以下方法验证配置:
- 检查 Grafana 数据源是否成功连接
- 验证必要的数据转换规则是否已配置
- 使用专门的调试仪表板检查 DORA 指标
最佳实践建议
- 分阶段部署:先验证内部 Grafana 正常工作,再迁移到外部 Grafana
- 网络隔离测试:在受限网络环境中进行连接测试
- 配置版本控制:将 Grafana 配置纳入版本控制系统
- 监控集成状态:设置监控检查集成状态
总结
通过正确配置 Helm 参数、确保网络连通性以及完整设置数据源,可以解决 DevLake 与外部 Grafana 集成时 DORA 仪表板不显示的问题。建议按照本文提供的步骤进行系统性检查和配置,确保各组件间能够正常通信和数据流转。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
93
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.33 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1