Apache DevLake 使用外部 Grafana 时 DORA 仪表板不显示问题解析
2025-06-30 14:48:17作者:齐冠琰
问题背景
在使用 Apache DevLake 项目时,许多团队会选择将 DevLake 与现有的 Grafana 监控系统集成。然而,当配置使用外部 Grafana 服务时,用户可能会遇到 DORA 仪表板无法正常显示的问题。本文将深入分析这一问题的原因,并提供完整的解决方案。
核心问题分析
当用户通过 Helm Chart 部署 DevLake 并配置使用外部 Grafana 时,DORA 仪表板无法自动显示在 Grafana 中。这通常涉及以下几个关键因素:
-
配置参数不完整:虽然用户设置了
grafana.enabled=false和grafana.external.url,但可能缺少其他必要的配置项。 -
网络连接问题:外部 Grafana 服务可能位于受限制的网络环境中,DevLake 组件无法与其建立有效连接。
-
数据源配置缺失:DORA 仪表板依赖特定的数据源,这些数据源需要预先在 Grafana 中正确配置。
详细解决方案
1. 完整的 Helm 配置
确保 Helm values.yaml 文件中包含以下关键配置:
grafana:
enabled: false
external:
url: "https://your-grafana.domain.com"
adminPassword: "your-admin-password"
envFromSecrets:
- name: "devlake-mysql-auth"
env:
TZ: "UTC"
2. 网络访问控制
检查并确保以下网络配置正确:
- 确认 DevLake 部署所在的网络能够访问外部 Grafana 服务
- 检查防火墙规则是否允许从 DevLake 集群到 Grafana 的流量
- 验证 Grafana 的负载均衡器是否配置了正确的访问控制规则
3. 数据源与仪表板配置
DORA 仪表板正常工作需要以下数据源:
- 部署数据:来自 CI/CD 系统如 Jenkins、GitLab CI 或 GitHub Actions
- 拉取请求数据:来自代码仓库如 GitHub、GitLab 或 Bitbucket
- 事件数据:来自问题跟踪系统如 Jira、GitHub Issues 等
4. 验证与调试
建议使用以下方法验证配置:
- 检查 Grafana 数据源是否成功连接
- 验证必要的数据转换规则是否已配置
- 使用专门的调试仪表板检查 DORA 指标
最佳实践建议
- 分阶段部署:先验证内部 Grafana 正常工作,再迁移到外部 Grafana
- 网络隔离测试:在受限网络环境中进行连接测试
- 配置版本控制:将 Grafana 配置纳入版本控制系统
- 监控集成状态:设置监控检查集成状态
总结
通过正确配置 Helm 参数、确保网络连通性以及完整设置数据源,可以解决 DevLake 与外部 Grafana 集成时 DORA 仪表板不显示的问题。建议按照本文提供的步骤进行系统性检查和配置,确保各组件间能够正常通信和数据流转。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0133
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
464
3.46 K
Ascend Extension for PyTorch
Python
273
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692