Pix2Seq: 开源项目的安装与使用教程
2024-09-21 09:29:05作者:姚月梅Lane
1. 项目介绍
Pix2Seq 是一个基于语言模型的通用目标检测框架,它将目标检测任务视为一个条件语言建模问题。Pix2Seq 通过对像素输入进行编码和解码,生成关于图像中对象的描述序列,包括边界框坐标和类别标签。Pix2Seq 的优势在于其简单性和通用性,可以轻松扩展到不同的领域和应用,如关键点检测、图像字幕和视觉问答等。
2. 项目快速启动
准备工作
在运行 Pix2Seq 代码之前,您需要完成以下准备工作:
- 克隆 Pix2Seq 代码库:
git clone https://github.com/google-research/pix2seq.git
- 安装所需的 Python 包:
pip install -r requirements.txt
- 下载 COCO 数据集注释文件:
wget https://storage.googleapis.com/pix2seq/multi_task/data/coco/json/captions_train2017_eval_compatible.json -P /tmp/coco_annotations
wget https://storage.googleapis.com/pix2seq/multi_task/data/coco/json/captions_val2017_eval_compatible.json -P /tmp/coco_annotations
wget https://storage.googleapis.com/pix2seq/multi_task/data/coco/json/instances_train2017.json -P /tmp/coco_annotations
wget https://storage.googleapis.com/pix2seq/multi_task/data/coco/json/instances_val2017.json -P /tmp/coco_annotations
wget https://storage.googleapis.com/pix2seq/multi_task/data/coco/json/person_keypoints_train2017.json -P /tmp/coco_annotations
wget https://storage.googleapis.com/pix2seq/multi_task/data/coco/json/person_keypoints_val2017.json -P /tmp/coco_annotations
- (可选) 如果无法从云端访问预训练检查点,可以手动下载并更新配置文件中的
pretrained_ckpt
路径:
gsutil cp -r gs://cloud_folder local_folder
训练目标检测模型
-
检查并更新配置文件
config_det_finetune.py
,例如encoder_variant
和image_size
。 -
运行训练脚本:
python3 run.py --mode=train --model_dir=/tmp/model_dir --config=configs/config_det_finetune.py --config=train.batch_size=32 --config=train.epochs=20 --config=optimization.learning_rate=3e-5
- (可选) 使用 TensorBoard 查看训练曲线:
tensorboard --logdir=/tmp/model_dir
评估目标检测模型
-
检查并更新配置文件
config_det_finetune.py
,例如encoder_variant
和image_size
。 -
设置
checkpoint_dir
(如果评估的检查点不在model_dir
中)。 -
运行评估脚本:
python3 run.py --mode=eval --model_dir=/tmp/model_dir --config=configs/config_det_finetune.py --config=dataset.coco_annotations_dir=/path/to/annotations --config=eval.batch_size=40
- (可选) 使用 TensorBoard 查看评估曲线和检测可视化:
tensorboard --logdir=/tmp/model_dir
评估多任务模型
-
在
configs/config_multi_task.py
中取消注释checkpoint_dir=get_multi_task_checkpoint_dir()
行。 -
根据需要更新配置文件中的
image_size
。 -
使用目标检测配置文件运行评估脚本:
python3 run.py --config=configs/config_multi_task.py:object_detection@coco/2017_object_detection/vit-b --model_dir=/tmp/pix2seq_eval_det
- (可选) 使用检测框评估实例分割和关键点检测:
python3 data/scripts/merge_coco_json_tfrecord.py --tfrecord_path=gs://pix2seq/multi_task/data/coco/tfrecord/val* --annotation_path=$boxes_json_path --output_dir=$box_tfrecords
- 使用实例分割配置文件运行评估脚本:
python3 run.py --config=configs/config_multi_task.py:instance_segmentation@coco/2017_instance_segmentation/vit-b --val_file_pattern=gs://pix2seq/multi_task/data/coco/det_boxes/vit_b_640x640/*tfrecord --num_samples=8 --model_dir=/tmp/pix2seq_eval_ins
- 使用关键点检测配置文件运行评估脚本:
python3 run.py --config=configs/config_multi_task.py:keypoint_detection@coco/201
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
266
55
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4