Pix2Seq: 开源项目的安装与使用教程
2024-09-21 09:29:05作者:姚月梅Lane
1. 项目介绍
Pix2Seq 是一个基于语言模型的通用目标检测框架,它将目标检测任务视为一个条件语言建模问题。Pix2Seq 通过对像素输入进行编码和解码,生成关于图像中对象的描述序列,包括边界框坐标和类别标签。Pix2Seq 的优势在于其简单性和通用性,可以轻松扩展到不同的领域和应用,如关键点检测、图像字幕和视觉问答等。
2. 项目快速启动
准备工作
在运行 Pix2Seq 代码之前,您需要完成以下准备工作:
- 克隆 Pix2Seq 代码库:
git clone https://github.com/google-research/pix2seq.git
- 安装所需的 Python 包:
pip install -r requirements.txt
- 下载 COCO 数据集注释文件:
wget https://storage.googleapis.com/pix2seq/multi_task/data/coco/json/captions_train2017_eval_compatible.json -P /tmp/coco_annotations
wget https://storage.googleapis.com/pix2seq/multi_task/data/coco/json/captions_val2017_eval_compatible.json -P /tmp/coco_annotations
wget https://storage.googleapis.com/pix2seq/multi_task/data/coco/json/instances_train2017.json -P /tmp/coco_annotations
wget https://storage.googleapis.com/pix2seq/multi_task/data/coco/json/instances_val2017.json -P /tmp/coco_annotations
wget https://storage.googleapis.com/pix2seq/multi_task/data/coco/json/person_keypoints_train2017.json -P /tmp/coco_annotations
wget https://storage.googleapis.com/pix2seq/multi_task/data/coco/json/person_keypoints_val2017.json -P /tmp/coco_annotations
- (可选) 如果无法从云端访问预训练检查点,可以手动下载并更新配置文件中的
pretrained_ckpt
路径:
gsutil cp -r gs://cloud_folder local_folder
训练目标检测模型
-
检查并更新配置文件
config_det_finetune.py
,例如encoder_variant
和image_size
。 -
运行训练脚本:
python3 run.py --mode=train --model_dir=/tmp/model_dir --config=configs/config_det_finetune.py --config=train.batch_size=32 --config=train.epochs=20 --config=optimization.learning_rate=3e-5
- (可选) 使用 TensorBoard 查看训练曲线:
tensorboard --logdir=/tmp/model_dir
评估目标检测模型
-
检查并更新配置文件
config_det_finetune.py
,例如encoder_variant
和image_size
。 -
设置
checkpoint_dir
(如果评估的检查点不在model_dir
中)。 -
运行评估脚本:
python3 run.py --mode=eval --model_dir=/tmp/model_dir --config=configs/config_det_finetune.py --config=dataset.coco_annotations_dir=/path/to/annotations --config=eval.batch_size=40
- (可选) 使用 TensorBoard 查看评估曲线和检测可视化:
tensorboard --logdir=/tmp/model_dir
评估多任务模型
-
在
configs/config_multi_task.py
中取消注释checkpoint_dir=get_multi_task_checkpoint_dir()
行。 -
根据需要更新配置文件中的
image_size
。 -
使用目标检测配置文件运行评估脚本:
python3 run.py --config=configs/config_multi_task.py:object_detection@coco/2017_object_detection/vit-b --model_dir=/tmp/pix2seq_eval_det
- (可选) 使用检测框评估实例分割和关键点检测:
python3 data/scripts/merge_coco_json_tfrecord.py --tfrecord_path=gs://pix2seq/multi_task/data/coco/tfrecord/val* --annotation_path=$boxes_json_path --output_dir=$box_tfrecords
- 使用实例分割配置文件运行评估脚本:
python3 run.py --config=configs/config_multi_task.py:instance_segmentation@coco/2017_instance_segmentation/vit-b --val_file_pattern=gs://pix2seq/multi_task/data/coco/det_boxes/vit_b_640x640/*tfrecord --num_samples=8 --model_dir=/tmp/pix2seq_eval_ins
- 使用关键点检测配置文件运行评估脚本:
python3 run.py --config=configs/config_multi_task.py:keypoint_detection@coco/201
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
1