OpenVINO中如何验证AVX-VNNI指令集在CPU推理中的使用
在深度学习推理优化领域,指令集优化是提升性能的重要手段之一。本文将详细介绍如何在OpenVINO框架下验证AVX-VNNI指令集是否在CPU推理过程中被实际使用。
AVX-VNNI指令集简介
AVX-VNNI(Vector Neural Network Instructions)是Intel针对深度学习工作负载推出的专用指令集扩展,主要优化了8位整数(INT8)矩阵乘法运算。相比传统的AVX2指令集,AVX-VNNI能够显著提升量化模型的推理性能。
验证方法
1. 使用性能计数器
OpenVINO的benchmark_app工具提供了详细的性能计数器功能,可以通过以下命令获取执行内核的详细信息:
benchmark_app -m 模型文件.xml -d CPU -niter 1000 -hint latency -pc -report_type detailed_counters
在输出报告中,关注exec_type字段,虽然它可能显示为jit_avx2_FP32或jit_avx2_INT8,但实际上当CPU支持AVX-VNNI时,OpenVINO会自动使用这些指令进行优化。
2. 编程接口检查
通过OpenVINO的C++ API可以获取更详细的执行信息:
auto infer_request = compiled_model.create_infer_request();
infer_request.infer();
auto profiling_info = infer_request.get_profiling_info();
for (auto& info : profiling_info) {
std::cout << "执行节点: " << info.node_name
<< ", 实现类型: " << info.impl_type
<< ", 执行类型: " << info.exec_type << std::endl;
}
在输出信息中,可以查看各节点的具体执行类型,判断是否使用了AVX-VNNI优化。
注意事项
-
自动优化机制:OpenVINO运行时会自动检测CPU支持的指令集,并选择最优的实现方式,无需手动指定AVX-VNNI。
-
模型量化要求:AVX-VNNI主要针对INT8量化模型优化效果明显,对于FP32或FP16模型可能不会使用这些指令。
-
硬件支持验证:在使用前应确认CPU确实支持AVX-VNNI指令集,可通过CPU-Z等工具查看。
性能优化建议
-
对于支持AVX-VNNI的CPU,推荐使用INT8量化模型以获得最佳性能。
-
在benchmark测试时,使用
-hint latency或-hint throughput参数可以针对不同场景优化指令集使用。 -
确保使用最新版本的OpenVINO,以获得最好的指令集优化支持。
通过以上方法,开发者可以有效地验证和优化OpenVINO在CPU上的推理性能,充分利用现代CPU的指令集扩展能力。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00