NNG项目中的IPC Use After Free问题分析与修复
问题背景
在NNG项目的IPC通信模块中,发现了一个严重的Use After Free漏洞。该漏洞会导致进程崩溃,特别是在Windows平台上使用IPC通信时表现尤为明显。这个问题实际上是之前已报告问题的延续,之前的修复尝试未能彻底解决问题。
问题现象
当使用NNG的IPC通信时,特别是在请求-响应模式下,系统会出现以下异常行为:
ipc_send_cb
回调函数在管道已经关闭后被调用- 访问已释放的内存区域导致进程崩溃
- 客户端进程偶尔会出现段错误
从堆栈跟踪可以看出,崩溃发生在异步I/O操作已经被释放后仍然尝试访问该内存区域的情况下。
技术分析
深入分析该问题,我们发现根本原因在于Windows平台的I/O取消机制与NNG的管道关闭逻辑之间存在时序竞争。
在Windows平台上,当调用CancelIo
函数取消I/O操作时,根据微软官方文档说明,所有被取消的I/O操作都会以ERROR_OPERATION_ABORTED
错误完成,并且所有I/O操作的完成通知都会正常发生。这意味着即使调用了CancelIo
,相关的完成回调函数仍会被至少调用一次。
这种机制导致了以下问题链:
- 管道关闭时,NNG尝试取消所有未完成的I/O操作
- Windows平台仍然会触发这些被取消操作的完成回调
- 回调函数尝试访问已经被释放的资源
- 最终导致Use After Free崩溃
解决方案
针对这个问题,我们采取了以下修复措施:
- 在关闭管道前,增加对未完成I/O操作的等待机制
- 使用
HasOverlappedIoCompleted
函数进行忙等待,确保所有I/O操作确实完成 - 在回调函数中增加额外的状态检查,防止访问已释放资源
这种方案虽然会在Windows平台上增加少量的关闭开销,但能够确保资源的正确释放和避免Use After Free问题。
实现细节
修复的关键在于正确处理Windows平台的异步I/O完成机制。我们需要注意:
CancelIo
不会立即终止所有I/O操作- 完成回调可能在任何时候被调用,即使操作已被取消
- 资源释放必须等待所有可能的回调完成
通过引入适当的同步机制和状态检查,我们能够确保资源管理的安全性,同时保持系统的高性能特性。
结论
这个案例展示了跨平台开发中处理异步I/O操作时的常见陷阱。特别是在Windows平台上,I/O取消机制与其他平台有显著差异,需要特别注意。通过深入理解操作系统底层机制和仔细设计资源管理策略,我们能够构建出更健壮、更可靠的通信系统。
对于使用NNG进行IPC通信的开发人员来说,这个修复确保了在Windows平台上的稳定性和可靠性,特别是在高负载和频繁连接建立/关闭的场景下。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









