LLaMA-Factory项目中MiniCPM-V2_6模型DPO训练问题解析
2025-05-02 17:48:05作者:伍霜盼Ellen
问题背景
在LLaMA-Factory项目(0.9.2.dev0版本)中,用户在使用MiniCPM-V2_6模型进行带图的DPO(直接偏好优化)训练时遇到了一个关键错误。该错误表现为模型在训练过程中接收到了重复的input_ids参数,导致训练过程中断。
错误分析
从错误堆栈中可以清晰地看到,问题发生在模型的前向传播过程中。具体错误信息显示:"Qwen2ForCausalLM got multiple values for keyword argument 'input_ids'",这表明模型在接收参数时,input_ids被多次传递。
错误发生在以下关键路径:
- 训练流程启动后,进入DPO训练阶段
- 在计算损失函数时,调用了模型的concatenated_forward方法
- 模型前向传播过程中,input_ids参数被重复传递
技术细节
深入分析错误堆栈,我们可以发现几个关键点:
-
模型结构基于Qwen2ForCausalLM实现,包含标准的Transformer架构组件:
- 嵌入层(embed_tokens)
- 28层解码器(Qwen2DecoderLayer)
- 自注意力机制(Qwen2Attention)
- MLP层(Qwen2MLP)
- 层归一化(Qwen2RMSNorm)
- 旋转位置编码(Qwen2RotaryEmbedding)
-
问题可能源于:
- 模型包装层在处理输入时重复添加了input_ids
- DPO训练流程中的数据处理逻辑存在缺陷
- 模型的前向传播方法实现与DPO训练器的预期不匹配
解决方案
根据用户反馈,该问题通过更新modeling文件得到解决。这表明:
- 原始modeling文件可能存在实现上的缺陷,未能正确处理DPO训练场景下的输入参数
- 更新后的版本可能修复了以下问题之一:
- 移除了重复的参数传递
- 改进了模型的前向传播方法实现
- 优化了输入参数的处理逻辑
最佳实践建议
对于使用LLaMA-Factory进行类似任务的开发者,建议:
- 确保使用最新版本的modeling文件
- 在开始DPO训练前,先进行小规模测试验证
- 关注模型输入参数的完整性检查
- 对于自定义模型,确保其前向传播方法与训练框架兼容
总结
这个问题展示了在复杂训练框架中,模型实现与训练流程配合的重要性。通过及时更新相关组件,可以有效避免这类参数传递冲突问题,确保训练流程的顺利进行。这也提醒开发者在使用开源框架时,要关注组件版本间的兼容性问题。
登录后查看全文
热门项目推荐
暂无数据
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
415
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
612
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141