首页
/ 开源项目最佳实践:Neural Text Generation with Unlikelihood Training

开源项目最佳实践:Neural Text Generation with Unlikelihood Training

2025-05-23 18:56:34作者:傅爽业Veleda

1. 项目介绍

本项目是基于论文《Neural Text Generation with Unlikelihood Training》的实现,该论文提出了一种新的神经文本生成训练方法,即不可能性训练(Unlikelihood Training)。这种方法通过惩罚模型生成不可能的输出序列,从而提高模型生成高质量文本的能力。本项目包含了不可能性训练的实现代码、模型微调工具以及评估方法,为研究者和开发者提供了一个实践和探索的平台。

2. 项目快速启动

环境准备

首先,你需要准备以下环境:

  • Python 3.x
  • PyTorch
  • fairseq
  • nltk
  • pandas
  • pytorch-transformers
  • tensorflow (可选,用于GPT-2微调)
  • tensorboardX (可选,用于日志记录)

克隆项目

git clone https://github.com/facebookresearch/unlikelihood_training.git
cd unlikelihood_training

安装依赖

安装fairseq:

git clone https://github.com/pytorch/fairseq.git
cd fairseq
git checkout 2b68e91f231a2b7997664e1418f30b808d889963
pip install --editable .

安装其他依赖:

pip install nltk pandas pytorch-transformers

如果需要微调GPT-2模型,还需要安装tensorflow和tensorboardX:

pip install tensorflow=1.14 tensorboardX

安装指定版本的PyTorch(覆盖fairseq安装的版本):

pip install torch==1.4.0

安装不可能性模块

将本项目中的custom目录复制到fairseq项目中:

export FAIRSEQ_DIR=/path/to/fairseq
export UNLIKELIHOOD_DIR=/path/to/unlikelihood_training
cp -r $UNLIKELIHOOD_DIR/custom $FAIRSEQ_DIR/fairseq

数据集准备

下载并解压wikipedia-103数据集:

wget https://dl.fbaipublicfiles.com/unlikelihood/wikitext-103_v0.tar.gz
tar xzvf wikitext-103_v0.tar.gz

训练模型

以下命令将在$FAIRSEQ_DIR目录下启动模型的训练:

python -u ./train.py --task language_modeling_with_generation ./data-bin/wikitext-103 \
--user-dir ./fairseq/custom --arch transformer_lm_ul --max-tokens 1536 --tokens-per-sample 1536 \
--fp16 --max-update 286000 --max-lr 1.0 --t-mult 2 --lr-period-updates 270000 \
--lr-scheduler cosine --lr-shrink 0.75 --warmup-updates 16000 --warmup-init-lr 1e-07 --min-lr 1e-09 \
--optimizer nag --lr 0.0001 --clip-norm 0.1 --update-freq 3 --seed 1 --sample-break-mode none \
--skip-invalid-size-inputs-valid-test --ddp-backend no_c10d --save-interval-updates 10000 \
--keep-interval-updates 2 --no-progress-bar --log-interval 100 \
--criterion cross_entropy_wcustom_metrics \
--save-dir ./checkpoint/baseline_model \
--tensorboard-logdir ./checkpoint/baseline_model

3. 应用案例和最佳实践

模型微调

在获得基线模型后,可以通过微调来进一步优化模型。以下命令展示了如何对基线模型进行序列级别的微调:

python -u ./train.py --task language_modeling_with_generation ./data-bin/wikitext-103 \
--user-dir ./fairseq/custom --arch transformer_lm_ul --max-tokens 1536 --tokens-per-sample 1536 \
--fp16 --max-update 1500 --max-lr 1.0e-2 --t-mult 2 --lr-period-updates 270000 \
--lr-scheduler cosine --lr-shrink 0.75 --warmup-updates 0 --warmup-init-lr 1e-07 --min-lr 1e-09 \
--optimizer nag --lr 0.0001 --clip-norm 0.1 --update-freq 3 --seed 1 --sample-break-mode none \
--skip-invalid-size-inputs-valid-test --ddp-backend no_c10d --save-interval-updates 100 \
--keep-interval-updates 2 --no-progress-bar --log-interval 10 \
--rank-alpha 1.0 --sequence-level-train-rate 0.5 \
--reset-lr-scheduler --reset-optimizer --reset-meters \
--compute-metrics-interval 1 --restore-file ./public_checkpoints/mle_baseline/checkpoint_best.pt \
--criterion cross_entropy_wcustom_metrics \
--sequence-prefix-length 50 --sequence-completion-length 100 \
--sequence-ngram-n 4 \
--save-dir ./checkpoint/seq_level_on_baseline \
--tensorboard-logdir ./checkpoint/seq_level_on_baseline

模型评估

在模型训练和微调后,可以通过评估来检查模型的性能。评估通常涉及使用测试数据集来计算诸如困惑度(Perplexity)等指标。

4. 典型生态项目

本项目作为自然语言处理领域的一个研究工具,可以与其他开源项目结合,例如:

  • 语言模型预训练项目,如BERT、GPT等。
  • 文本生成应用,如自动写作、机器翻译等。
  • 数据集项目,如各种语言的大型文本数据集。

通过与其他项目的集成,本项目的研究成果可以在更广泛的场景中应用,促进自然语言处理技术的发展。

登录后查看全文
热门项目推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.92 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
929
553
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
422
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
65
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8