开源项目最佳实践:Neural Text Generation with Unlikelihood Training
2025-05-23 07:22:42作者:傅爽业Veleda
1. 项目介绍
本项目是基于论文《Neural Text Generation with Unlikelihood Training》的实现,该论文提出了一种新的神经文本生成训练方法,即不可能性训练(Unlikelihood Training)。这种方法通过惩罚模型生成不可能的输出序列,从而提高模型生成高质量文本的能力。本项目包含了不可能性训练的实现代码、模型微调工具以及评估方法,为研究者和开发者提供了一个实践和探索的平台。
2. 项目快速启动
环境准备
首先,你需要准备以下环境:
- Python 3.x
- PyTorch
- fairseq
- nltk
- pandas
- pytorch-transformers
- tensorflow (可选,用于GPT-2微调)
- tensorboardX (可选,用于日志记录)
克隆项目
git clone https://github.com/facebookresearch/unlikelihood_training.git
cd unlikelihood_training
安装依赖
安装fairseq:
git clone https://github.com/pytorch/fairseq.git
cd fairseq
git checkout 2b68e91f231a2b7997664e1418f30b808d889963
pip install --editable .
安装其他依赖:
pip install nltk pandas pytorch-transformers
如果需要微调GPT-2模型,还需要安装tensorflow和tensorboardX:
pip install tensorflow=1.14 tensorboardX
安装指定版本的PyTorch(覆盖fairseq安装的版本):
pip install torch==1.4.0
安装不可能性模块
将本项目中的custom目录复制到fairseq项目中:
export FAIRSEQ_DIR=/path/to/fairseq
export UNLIKELIHOOD_DIR=/path/to/unlikelihood_training
cp -r $UNLIKELIHOOD_DIR/custom $FAIRSEQ_DIR/fairseq
数据集准备
下载并解压wikipedia-103数据集:
wget https://dl.fbaipublicfiles.com/unlikelihood/wikitext-103_v0.tar.gz
tar xzvf wikitext-103_v0.tar.gz
训练模型
以下命令将在$FAIRSEQ_DIR目录下启动模型的训练:
python -u ./train.py --task language_modeling_with_generation ./data-bin/wikitext-103 \
--user-dir ./fairseq/custom --arch transformer_lm_ul --max-tokens 1536 --tokens-per-sample 1536 \
--fp16 --max-update 286000 --max-lr 1.0 --t-mult 2 --lr-period-updates 270000 \
--lr-scheduler cosine --lr-shrink 0.75 --warmup-updates 16000 --warmup-init-lr 1e-07 --min-lr 1e-09 \
--optimizer nag --lr 0.0001 --clip-norm 0.1 --update-freq 3 --seed 1 --sample-break-mode none \
--skip-invalid-size-inputs-valid-test --ddp-backend no_c10d --save-interval-updates 10000 \
--keep-interval-updates 2 --no-progress-bar --log-interval 100 \
--criterion cross_entropy_wcustom_metrics \
--save-dir ./checkpoint/baseline_model \
--tensorboard-logdir ./checkpoint/baseline_model
3. 应用案例和最佳实践
模型微调
在获得基线模型后,可以通过微调来进一步优化模型。以下命令展示了如何对基线模型进行序列级别的微调:
python -u ./train.py --task language_modeling_with_generation ./data-bin/wikitext-103 \
--user-dir ./fairseq/custom --arch transformer_lm_ul --max-tokens 1536 --tokens-per-sample 1536 \
--fp16 --max-update 1500 --max-lr 1.0e-2 --t-mult 2 --lr-period-updates 270000 \
--lr-scheduler cosine --lr-shrink 0.75 --warmup-updates 0 --warmup-init-lr 1e-07 --min-lr 1e-09 \
--optimizer nag --lr 0.0001 --clip-norm 0.1 --update-freq 3 --seed 1 --sample-break-mode none \
--skip-invalid-size-inputs-valid-test --ddp-backend no_c10d --save-interval-updates 100 \
--keep-interval-updates 2 --no-progress-bar --log-interval 10 \
--rank-alpha 1.0 --sequence-level-train-rate 0.5 \
--reset-lr-scheduler --reset-optimizer --reset-meters \
--compute-metrics-interval 1 --restore-file ./public_checkpoints/mle_baseline/checkpoint_best.pt \
--criterion cross_entropy_wcustom_metrics \
--sequence-prefix-length 50 --sequence-completion-length 100 \
--sequence-ngram-n 4 \
--save-dir ./checkpoint/seq_level_on_baseline \
--tensorboard-logdir ./checkpoint/seq_level_on_baseline
模型评估
在模型训练和微调后,可以通过评估来检查模型的性能。评估通常涉及使用测试数据集来计算诸如困惑度(Perplexity)等指标。
4. 典型生态项目
本项目作为自然语言处理领域的一个研究工具,可以与其他开源项目结合,例如:
- 语言模型预训练项目,如BERT、GPT等。
- 文本生成应用,如自动写作、机器翻译等。
- 数据集项目,如各种语言的大型文本数据集。
通过与其他项目的集成,本项目的研究成果可以在更广泛的场景中应用,促进自然语言处理技术的发展。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.69 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
596
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
227
仓颉编译器源码及 cjdb 调试工具。
C++
123
656
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
195
71
仓颉编程语言测试用例。
Cangjie
36
657