首页
/ 开源项目最佳实践:Neural Text Generation with Unlikelihood Training

开源项目最佳实践:Neural Text Generation with Unlikelihood Training

2025-05-23 18:56:34作者:傅爽业Veleda

1. 项目介绍

本项目是基于论文《Neural Text Generation with Unlikelihood Training》的实现,该论文提出了一种新的神经文本生成训练方法,即不可能性训练(Unlikelihood Training)。这种方法通过惩罚模型生成不可能的输出序列,从而提高模型生成高质量文本的能力。本项目包含了不可能性训练的实现代码、模型微调工具以及评估方法,为研究者和开发者提供了一个实践和探索的平台。

2. 项目快速启动

环境准备

首先,你需要准备以下环境:

  • Python 3.x
  • PyTorch
  • fairseq
  • nltk
  • pandas
  • pytorch-transformers
  • tensorflow (可选,用于GPT-2微调)
  • tensorboardX (可选,用于日志记录)

克隆项目

git clone https://github.com/facebookresearch/unlikelihood_training.git
cd unlikelihood_training

安装依赖

安装fairseq:

git clone https://github.com/pytorch/fairseq.git
cd fairseq
git checkout 2b68e91f231a2b7997664e1418f30b808d889963
pip install --editable .

安装其他依赖:

pip install nltk pandas pytorch-transformers

如果需要微调GPT-2模型,还需要安装tensorflow和tensorboardX:

pip install tensorflow=1.14 tensorboardX

安装指定版本的PyTorch(覆盖fairseq安装的版本):

pip install torch==1.4.0

安装不可能性模块

将本项目中的custom目录复制到fairseq项目中:

export FAIRSEQ_DIR=/path/to/fairseq
export UNLIKELIHOOD_DIR=/path/to/unlikelihood_training
cp -r $UNLIKELIHOOD_DIR/custom $FAIRSEQ_DIR/fairseq

数据集准备

下载并解压wikipedia-103数据集:

wget https://dl.fbaipublicfiles.com/unlikelihood/wikitext-103_v0.tar.gz
tar xzvf wikitext-103_v0.tar.gz

训练模型

以下命令将在$FAIRSEQ_DIR目录下启动模型的训练:

python -u ./train.py --task language_modeling_with_generation ./data-bin/wikitext-103 \
--user-dir ./fairseq/custom --arch transformer_lm_ul --max-tokens 1536 --tokens-per-sample 1536 \
--fp16 --max-update 286000 --max-lr 1.0 --t-mult 2 --lr-period-updates 270000 \
--lr-scheduler cosine --lr-shrink 0.75 --warmup-updates 16000 --warmup-init-lr 1e-07 --min-lr 1e-09 \
--optimizer nag --lr 0.0001 --clip-norm 0.1 --update-freq 3 --seed 1 --sample-break-mode none \
--skip-invalid-size-inputs-valid-test --ddp-backend no_c10d --save-interval-updates 10000 \
--keep-interval-updates 2 --no-progress-bar --log-interval 100 \
--criterion cross_entropy_wcustom_metrics \
--save-dir ./checkpoint/baseline_model \
--tensorboard-logdir ./checkpoint/baseline_model

3. 应用案例和最佳实践

模型微调

在获得基线模型后,可以通过微调来进一步优化模型。以下命令展示了如何对基线模型进行序列级别的微调:

python -u ./train.py --task language_modeling_with_generation ./data-bin/wikitext-103 \
--user-dir ./fairseq/custom --arch transformer_lm_ul --max-tokens 1536 --tokens-per-sample 1536 \
--fp16 --max-update 1500 --max-lr 1.0e-2 --t-mult 2 --lr-period-updates 270000 \
--lr-scheduler cosine --lr-shrink 0.75 --warmup-updates 0 --warmup-init-lr 1e-07 --min-lr 1e-09 \
--optimizer nag --lr 0.0001 --clip-norm 0.1 --update-freq 3 --seed 1 --sample-break-mode none \
--skip-invalid-size-inputs-valid-test --ddp-backend no_c10d --save-interval-updates 100 \
--keep-interval-updates 2 --no-progress-bar --log-interval 10 \
--rank-alpha 1.0 --sequence-level-train-rate 0.5 \
--reset-lr-scheduler --reset-optimizer --reset-meters \
--compute-metrics-interval 1 --restore-file ./public_checkpoints/mle_baseline/checkpoint_best.pt \
--criterion cross_entropy_wcustom_metrics \
--sequence-prefix-length 50 --sequence-completion-length 100 \
--sequence-ngram-n 4 \
--save-dir ./checkpoint/seq_level_on_baseline \
--tensorboard-logdir ./checkpoint/seq_level_on_baseline

模型评估

在模型训练和微调后,可以通过评估来检查模型的性能。评估通常涉及使用测试数据集来计算诸如困惑度(Perplexity)等指标。

4. 典型生态项目

本项目作为自然语言处理领域的一个研究工具,可以与其他开源项目结合,例如:

  • 语言模型预训练项目,如BERT、GPT等。
  • 文本生成应用,如自动写作、机器翻译等。
  • 数据集项目,如各种语言的大型文本数据集。

通过与其他项目的集成,本项目的研究成果可以在更广泛的场景中应用,促进自然语言处理技术的发展。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
176
261
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
kernelkernel
deepin linux kernel
C
22
5