开源项目最佳实践:Neural Text Generation with Unlikelihood Training
2025-05-23 04:54:08作者:傅爽业Veleda
1. 项目介绍
本项目是基于论文《Neural Text Generation with Unlikelihood Training》的实现,该论文提出了一种新的神经文本生成训练方法,即不可能性训练(Unlikelihood Training)。这种方法通过惩罚模型生成不可能的输出序列,从而提高模型生成高质量文本的能力。本项目包含了不可能性训练的实现代码、模型微调工具以及评估方法,为研究者和开发者提供了一个实践和探索的平台。
2. 项目快速启动
环境准备
首先,你需要准备以下环境:
- Python 3.x
- PyTorch
- fairseq
- nltk
- pandas
- pytorch-transformers
- tensorflow (可选,用于GPT-2微调)
- tensorboardX (可选,用于日志记录)
克隆项目
git clone https://github.com/facebookresearch/unlikelihood_training.git
cd unlikelihood_training
安装依赖
安装fairseq:
git clone https://github.com/pytorch/fairseq.git
cd fairseq
git checkout 2b68e91f231a2b7997664e1418f30b808d889963
pip install --editable .
安装其他依赖:
pip install nltk pandas pytorch-transformers
如果需要微调GPT-2模型,还需要安装tensorflow和tensorboardX:
pip install tensorflow=1.14 tensorboardX
安装指定版本的PyTorch(覆盖fairseq安装的版本):
pip install torch==1.4.0
安装不可能性模块
将本项目中的custom目录复制到fairseq项目中:
export FAIRSEQ_DIR=/path/to/fairseq
export UNLIKELIHOOD_DIR=/path/to/unlikelihood_training
cp -r $UNLIKELIHOOD_DIR/custom $FAIRSEQ_DIR/fairseq
数据集准备
下载并解压wikipedia-103数据集:
wget https://dl.fbaipublicfiles.com/unlikelihood/wikitext-103_v0.tar.gz
tar xzvf wikitext-103_v0.tar.gz
训练模型
以下命令将在$FAIRSEQ_DIR目录下启动模型的训练:
python -u ./train.py --task language_modeling_with_generation ./data-bin/wikitext-103 \
--user-dir ./fairseq/custom --arch transformer_lm_ul --max-tokens 1536 --tokens-per-sample 1536 \
--fp16 --max-update 286000 --max-lr 1.0 --t-mult 2 --lr-period-updates 270000 \
--lr-scheduler cosine --lr-shrink 0.75 --warmup-updates 16000 --warmup-init-lr 1e-07 --min-lr 1e-09 \
--optimizer nag --lr 0.0001 --clip-norm 0.1 --update-freq 3 --seed 1 --sample-break-mode none \
--skip-invalid-size-inputs-valid-test --ddp-backend no_c10d --save-interval-updates 10000 \
--keep-interval-updates 2 --no-progress-bar --log-interval 100 \
--criterion cross_entropy_wcustom_metrics \
--save-dir ./checkpoint/baseline_model \
--tensorboard-logdir ./checkpoint/baseline_model
3. 应用案例和最佳实践
模型微调
在获得基线模型后,可以通过微调来进一步优化模型。以下命令展示了如何对基线模型进行序列级别的微调:
python -u ./train.py --task language_modeling_with_generation ./data-bin/wikitext-103 \
--user-dir ./fairseq/custom --arch transformer_lm_ul --max-tokens 1536 --tokens-per-sample 1536 \
--fp16 --max-update 1500 --max-lr 1.0e-2 --t-mult 2 --lr-period-updates 270000 \
--lr-scheduler cosine --lr-shrink 0.75 --warmup-updates 0 --warmup-init-lr 1e-07 --min-lr 1e-09 \
--optimizer nag --lr 0.0001 --clip-norm 0.1 --update-freq 3 --seed 1 --sample-break-mode none \
--skip-invalid-size-inputs-valid-test --ddp-backend no_c10d --save-interval-updates 100 \
--keep-interval-updates 2 --no-progress-bar --log-interval 10 \
--rank-alpha 1.0 --sequence-level-train-rate 0.5 \
--reset-lr-scheduler --reset-optimizer --reset-meters \
--compute-metrics-interval 1 --restore-file ./public_checkpoints/mle_baseline/checkpoint_best.pt \
--criterion cross_entropy_wcustom_metrics \
--sequence-prefix-length 50 --sequence-completion-length 100 \
--sequence-ngram-n 4 \
--save-dir ./checkpoint/seq_level_on_baseline \
--tensorboard-logdir ./checkpoint/seq_level_on_baseline
模型评估
在模型训练和微调后,可以通过评估来检查模型的性能。评估通常涉及使用测试数据集来计算诸如困惑度(Perplexity)等指标。
4. 典型生态项目
本项目作为自然语言处理领域的一个研究工具,可以与其他开源项目结合,例如:
- 语言模型预训练项目,如BERT、GPT等。
- 文本生成应用,如自动写作、机器翻译等。
- 数据集项目,如各种语言的大型文本数据集。
通过与其他项目的集成,本项目的研究成果可以在更广泛的场景中应用,促进自然语言处理技术的发展。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355