Bittensor v9.0.3版本发布:优化异步操作与修复关键问题
Bittensor是一个开源的、去中心化的机器学习网络协议,它通过区块链技术将全球的机器学习资源连接起来,形成一个共享的智能计算网络。在这个网络中,参与者可以通过贡献计算资源或提供机器学习模型来获得代币奖励。Bittensor的核心目标是创建一个开放的、协作的AI开发环境,让任何人都能参与并受益于人工智能的发展。
异步操作性能提升
在v9.0.3版本中,开发团队对异步操作进行了重要优化。移除了异步操作和批量解质押(unstake_multiple)中的限制,这一改进显著提升了网络操作的吞吐量和响应速度。对于开发者而言,这意味着可以更高效地执行批量操作,特别是在处理大量质押或解质押请求时,不再受到原有系统限制的约束。
关键功能修复与增强
委托查询功能修复
修复了异步获取委托(get_delegated)功能的问题。这一修复确保了用户能够准确查询其委托状态,对于网络参与者监控和管理其资产至关重要。委托机制是Bittensor网络中重要的经济激励机制之一,允许代币持有者将代币委托给验证者以获得收益。
时间戳获取方法新增
新增了get_timestamp方法,为开发者提供了获取区块链时间戳的标准方式。这一功能在网络同步、事件排序和时间敏感型操作中特别有用,增强了网络操作的确定性和可预测性。
测试框架改进
端到端测试增强
对端到端测试框架进行了多项改进,包括修复了test_set_weights测试用例,改进了测试设置流程。这些改进提高了测试的可靠性和覆盖率,确保核心功能在各种场景下都能正常工作。
数据链模拟优化
对数据链(data_chain)类方法的模拟进行了优化,使得测试环境更加接近真实网络条件。这种改进有助于在开发阶段发现和解决潜在问题,提高代码质量。
依赖项更新
更新了异步substrate和btwallet的依赖项版本。依赖管理是区块链项目稳定性的关键因素,定期更新依赖可以确保项目使用最新的安全补丁和性能优化。
代码质量提升
修复了多处拼写错误和代码规范问题,这些看似微小的改进实际上对项目的长期可维护性至关重要。同时,对Dendrite类的析构方法进行了修复,确保资源能够正确释放,避免潜在的内存泄漏问题。
总结
Bittensor v9.0.3版本虽然没有引入重大新功能,但对现有系统进行了多项重要优化和修复。这些改进主要集中在提升网络性能、增强系统稳定性和改善开发者体验方面。对于Bittensor网络的参与者来说,升级到最新版本将获得更流畅的操作体验和更可靠的网络服务。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00