Hollows Hunter项目在Linux下的编译问题与解决方案
项目背景
Hollows Hunter是一款功能强大的Windows进程检测工具,主要用于识别和分析被注入或篡改的进程。该项目基于C++开发,使用CMake作为构建系统。虽然主要针对Windows平台,但开发者通常会在Linux环境下使用MinGW交叉编译工具链来生成Windows可执行文件。
常见编译问题
在Linux环境下使用MinGW交叉编译Hollows Hunter时,开发者可能会遇到几个典型问题:
-
std::mutex相关错误
编译过程中出现'mutex' in namespace 'std' does not name a type错误,提示标准库互斥量类型未定义。这是由于MinGW的线程模型选择不当导致的。 -
资源编译器缺失
构建过程中报错windres: not found,表明系统找不到Windows资源编译器,这会导致无法处理程序资源文件。 -
Windows API版本定义缺失
某些现代Windows API函数如QueryFullProcessImageNameW无法识别,因为没有定义最低支持的Windows版本。
详细解决方案
1. 解决std::mutex编译错误
这个问题源于MinGW-w64的线程模型选择。MinGW-w64提供两种线程模型:
- win32:传统的Windows线程模型
- posix:兼容POSIX标准的线程模型
要解决这个问题:
sudo apt install g++-mingw-w64-x86-64-posix
sudo update-alternatives --config x86_64-w64-mingw32-g++
在配置菜单中选择posix版本(通常标有*号)。对于GCC 13及以上版本,这个问题可能已经得到修复。
2. 处理Windows资源编译器问题
确保系统已安装MinGW的资源编译器组件,并在CMake配置中明确指定资源编译器路径:
sudo apt install mingw-w64-tools
在CMakeLists.txt或构建脚本中添加:
set(CMAKE_RC_COMPILER x86_64-w64-mingw32-windres)
3. 定义Windows版本宏
为避免现代Windows API函数无法识别的问题,需要在CMake配置中添加Windows版本定义:
add_compile_definitions(
_WIN32_WINNT=0x0600 # Windows Vista及以上版本
)
构建最佳实践
- 完整构建步骤
在Ubuntu系统上推荐的完整构建流程:
# 安装必要工具链
sudo apt install g++-mingw-w64-x86-64-posix mingw-w64-tools
# 配置构建环境
mkdir build && cd build
cmake .. -DCMAKE_TOOLCHAIN_FILE=../cmake/mingw64_toolchain.cmake \
-DCMAKE_RC_COMPILER=x86_64-w64-mingw32-windres
# 开始构建
make
-
版本选择建议
推荐使用GCC 13或更高版本的MinGW工具链,这些版本已经修复了许多早期存在的问题。 -
警告处理
项目经过优化后,编译警告已大幅减少。对于剩余的少量警告(如枚举类型比较),通常不会影响功能,但开发者可以根据需要进一步调整代码。
总结
通过正确配置MinGW-w64的线程模型、确保资源编译器可用以及定义适当的Windows版本宏,开发者可以顺利在Linux环境下交叉编译Hollows Hunter项目。这些解决方案不仅适用于Hollows Hunter,对于其他需要从Linux交叉编译到Windows的C++项目也具有参考价值。随着MinGW工具链的不断更新,这些跨平台编译问题将逐渐减少,为开发者提供更顺畅的体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00