Recipe-scrapers项目解析:处理营养信息文本中的重复元素问题
2025-07-07 06:42:37作者:宣聪麟
在recipe-scrapers项目中,开发者发现了一个关于营养信息解析的常见问题。当从某些食谱网站(如usapears.org)抓取数据时,营养信息的键名和值会出现重复现象。这个问题看似简单,但实际上涉及HTML结构解析和数据处理策略。
问题现象分析
在正常情况下的营养信息数据结构中,我们期望看到类似这样的格式:
{
"calories": "230",
"carbohydrateContent": "34g"
}
但实际抓取结果却变成了:
{
"calories": "Calories: 230",
"carbohydrateContent": "Carbohydrate: 34g"
}
这种重复不仅增加了数据冗余,还影响了后续的数据处理和分析。
技术根源探究
经过分析,这个问题源于网站使用的schema.org微数据格式。网站开发者将营养信息的名称和值都放在了同一个HTML元素中,通常采用类似这样的结构:
<span itemprop="calories"><strong>Calories:</strong> 230</span>
recipe-scrapers项目在解析时,直接将整个元素的文本内容提取出来,导致了名称和值都被包含在结果中。
解决方案设计
要解决这个问题,我们需要实现一个智能解析器,能够:
- 识别包含营养信息的HTML元素
- 区分元素中的标签部分(如标签内的文本)和实际数值
- 只提取数值部分作为最终结果
具体实现时需要考虑以下技术细节:
- 使用HTML解析库(如BeautifulSoup)提取元素内容
- 检查标签是否出现在文本开头
- 验证标签后是否跟随冒号分隔符
- 处理可能存在的空白字符和特殊符号
实现注意事项
在实现解决方案时,开发者需要特别注意:
- 边界条件处理:不是所有营养信息都采用相同的格式,需要确保方案具有足够的鲁棒性
- 性能考量:添加额外的解析逻辑可能会影响抓取速度,需要进行优化
- 向后兼容:确保修改不会影响其他正常网站的抓取结果
最佳实践建议
对于类似的结构化数据抓取问题,建议:
- 优先使用网站提供的结构化数据(如JSON-LD格式)
- 当必须解析HTML时,建立完善的元素模式识别机制
- 为不同的网站实现特定的解析适配器,而不是尝试一刀切的解决方案
这个问题虽然看似简单,但很好地展示了在实际网络爬虫开发中遇到的各种数据不一致性挑战。通过解决这类问题,可以显著提高数据抓取的质量和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92