探索CUDA高性能计算:TensorOp Matmul 教程
2024-05-31 13:17:57作者:庞眉杨Will
在这个开源项目中,我们向您介绍了一种CUDA矩阵乘法(MatMul)的实现教程,特别针对CUDA初学者,旨在提供高效率内核设计的洞察力。这个仓库不仅包含了一些基础的实现示例,还有性能测试和优化技术的详细解释。
项目简介
TensorOp Matmul Tutorial 是一个实用的资源库,展示了如何利用CUDA进行高效的矩阵运算。通过对比不同版本的MatMul内核,您可以学习到如何在GPU上编写高度优化的代码。该库包含了与CuBLAS、CUTLASS、Triton以及TVM等知名库的性能比较,并且提供了一个自定义实现的例子,以展示如何手动优化性能。
技术分析
项目中的核心部分是examples/matmul/this,它包含了一个自定义的CUDA MatMul实现。此外,还有对单个原子操作和reduce操作的演示。这些例子有助于理解CUDA编程的基本原理,包括线程块同步、共享内存的利用以及如何构建高效能的CUDA内核。
应用场景
该项目非常适合以下情况:
- 计算密集型应用,如深度学习模型训练和推理。
- 想要深入理解CUDA编程并提升矩阵运算性能的研究者或工程师。
- 对比和评估现有CUDA数学库性能的开发者。
项目特点
- 全面的性能比较:项目提供了与其他流行库(如CuBLAS、CUTLASS、Triton、TVM)的性能对比,显示了自定义实现的优势。
- 高度可定制化:源码可以作为一个起点,用于进一步的性能调优和特定需求的定制。
- 与MLIR集成:通过使用MLIR生成CUDA内核,可以了解自动化工具如何接近手动优化的性能。
- 详尽的文档:除了代码本身,还有一篇详细的知乎文章解释了各种MatMul内核的设计思路。
性能结果显示,自定义实现相对于Relay+CUTLASS有平均1.73倍的速度提升,对于TensorIR(经过1000次MetaSchedule调优)有1.22倍的增益,甚至与CUTLASS和CuBLAS相比也表现优秀。
总之,无论您是对CUDA感兴趣的初学者还是经验丰富的开发者,TensorOp Matmul Tutorial都是一个值得探索的宝贵资源。通过实践这个项目,您可以深入了解CUDA编程的精髓,并能够创建出性能更优的矩阵运算程序。现在就加入我们,一起踏上这段高性能计算的旅程吧!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
316
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
155
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
241
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K