PyPortfolioOpt中EfficientSemivariance的正确输入参数解析
2025-06-10 03:39:10作者:昌雅子Ethen
在PyPortfolioOpt投资组合优化库中,EfficientSemivariance类实现了基于半方差的风险度量方法。与传统的均值-方差优化不同,半方差优化更关注下行风险,这使得它在实际投资决策中更具现实意义。本文将深入解析该类的正确输入参数及其技术原理。
半方差优化的核心思想
半方差(Semivariance)是方差的一种变体,它只计算低于均值(或某个基准)的收益波动。这种度量方式更符合投资者实际关注的风险——人们通常更担心资产下跌而非上涨。PyPortfolioOpt通过EfficientSemivariance类实现了这种优化方法。
输入参数的技术要求
EfficientSemivariance构造函数需要两个关键输入:
-
预期收益参数:
- 应使用mean_historical_returns等方法计算的年化收益率
- 代表投资组合中各资产的期望回报
- 示例:
mu = expected_returns.mean_historical_returns(price_data)
-
历史收益率数据:
- 必须提供原始的历史百分比收益率数据
- 应使用returns_from_prices方法从价格数据转换得到
- 示例:
returns = expected_returns.returns_from_prices(price_data)
技术实现原理
EfficientSemivariance内部工作原理与传统的EfficientFrontier有显著不同:
- 它不会使用预先计算的协方差矩阵,而是直接基于原始收益率数据计算半方差
- 优化过程中,算法会识别所有低于基准的收益率观测值
- 通过二次规划最小化这些下行波动的平方和
常见误区与正确实践
很多用户容易混淆两种输入数据的使用场景:
- 错误做法:试图传递协方差矩阵或直接使用年化收益率作为第二参数
- 正确做法:第一参数用年化收益率,第二参数用原始日收益率
这种设计选择是因为半方差计算需要完整的收益率分布信息,而不仅仅是汇总统计量。PyPortfolioOpt的这种API设计既保证了计算效率,又确保了风险度量的准确性。
实际应用建议
对于实际应用,建议遵循以下工作流程:
- 准备历史价格数据
- 转换为收益率:
returns = expected_returns.returns_from_prices(prices) - 计算预期收益:
mu = expected_returns.mean_historical_returns(prices) - 初始化优化器:
es = EfficientSemivariance(mu, returns)
这种参数传递方式确保了半方差计算基于完整的历史信息,同时预期收益使用年化值保持与其他优化方法的一致性。理解这一技术细节对于正确使用PyPortfolioOpt进行下行风险优化至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249