PyPortfolioOpt中EfficientSemivariance的正确输入参数解析
2025-06-10 10:39:23作者:昌雅子Ethen
在PyPortfolioOpt投资组合优化库中,EfficientSemivariance类实现了基于半方差的风险度量方法。与传统的均值-方差优化不同,半方差优化更关注下行风险,这使得它在实际投资决策中更具现实意义。本文将深入解析该类的正确输入参数及其技术原理。
半方差优化的核心思想
半方差(Semivariance)是方差的一种变体,它只计算低于均值(或某个基准)的收益波动。这种度量方式更符合投资者实际关注的风险——人们通常更担心资产下跌而非上涨。PyPortfolioOpt通过EfficientSemivariance类实现了这种优化方法。
输入参数的技术要求
EfficientSemivariance构造函数需要两个关键输入:
-
预期收益参数:
- 应使用mean_historical_returns等方法计算的年化收益率
- 代表投资组合中各资产的期望回报
- 示例:
mu = expected_returns.mean_historical_returns(price_data)
-
历史收益率数据:
- 必须提供原始的历史百分比收益率数据
- 应使用returns_from_prices方法从价格数据转换得到
- 示例:
returns = expected_returns.returns_from_prices(price_data)
技术实现原理
EfficientSemivariance内部工作原理与传统的EfficientFrontier有显著不同:
- 它不会使用预先计算的协方差矩阵,而是直接基于原始收益率数据计算半方差
- 优化过程中,算法会识别所有低于基准的收益率观测值
- 通过二次规划最小化这些下行波动的平方和
常见误区与正确实践
很多用户容易混淆两种输入数据的使用场景:
- 错误做法:试图传递协方差矩阵或直接使用年化收益率作为第二参数
- 正确做法:第一参数用年化收益率,第二参数用原始日收益率
这种设计选择是因为半方差计算需要完整的收益率分布信息,而不仅仅是汇总统计量。PyPortfolioOpt的这种API设计既保证了计算效率,又确保了风险度量的准确性。
实际应用建议
对于实际应用,建议遵循以下工作流程:
- 准备历史价格数据
- 转换为收益率:
returns = expected_returns.returns_from_prices(prices) - 计算预期收益:
mu = expected_returns.mean_historical_returns(prices) - 初始化优化器:
es = EfficientSemivariance(mu, returns)
这种参数传递方式确保了半方差计算基于完整的历史信息,同时预期收益使用年化值保持与其他优化方法的一致性。理解这一技术细节对于正确使用PyPortfolioOpt进行下行风险优化至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
201
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
427
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695