Karpenter升级至v1.3.3版本后CPU使用率异常升高问题分析
Karpenter作为Kubernetes集群的自动扩缩容组件,在从v0.36.1升级到v1.3.3版本后,多个用户报告了控制器CPU使用率显著增加的问题。本文将从技术角度分析这一现象的原因、影响范围以及解决方案。
问题现象
用户反馈在升级Karpenter版本后,控制器容器的CPU使用率出现了2-4倍的增长。在相同工作负载下:
- v0.36.1版本运行平稳,CPU使用率维持在80%左右(1核配置)
- v1.3.3版本CPU使用率接近100%,即使将CPU限制从1核提升到3核也无法缓解
性能分析火焰图显示,v1.3.3版本中GetInstanceTypes
和buildDomainGroups
函数消耗了大量CPU资源,分别占总CPU使用的41%和17.5%。
问题根源
经过社区调查和代码分析,发现CPU使用率升高主要与以下因素有关:
-
容量预留功能相关变更:v1.3.x版本引入了容量预留机制的改进,即使该功能未被启用,相关代码路径也会增加CPU开销。
-
实例类型信息处理:新版本中对EC2实例类型信息的获取和处理逻辑变得更加频繁,导致
GetInstanceTypes
成为CPU消耗大户。 -
批处理参数调整:部分用户配置的
BATCH_MAX_DURATION
和BATCH_IDLE_DURATION
参数可能加剧了CPU使用率问题。
影响范围
该问题影响所有从v0.36.x或v1.0.x升级到v1.3.x版本的用户环境,表现为:
- 空闲集群中Karpenter控制器CPU使用率异常偏高
- 工作节点资源使用率监控图表显示持续高CPU占用
- 需要不断增加CPU资源限制来维持正常运行
解决方案
社区通过以下方式解决了这一问题:
-
版本回退:临时解决方案是回退到v1.2.x版本,可立即恢复正常的CPU使用率。
-
代码优化:开发团队对实例类型信息处理逻辑进行了优化,减少了不必要的计算开销。
-
版本升级:v1.4.0版本包含了完整的性能优化,多个用户验证确认CPU使用率已恢复到v1.0.x的水平。
最佳实践建议
对于Karpenter用户,建议:
-
版本选择:生产环境建议直接采用v1.4.0或更高版本,避免使用v1.3.x版本。
-
监控配置:升级后应密切监控控制器资源使用情况,特别是CPU和内存指标。
-
参数调优:根据集群规模适当调整批处理参数,平衡延迟和资源消耗。
-
性能分析:遇到性能问题时,可启用分析功能(设置
ENABLE_PROFILING=true
)生成火焰图辅助诊断。
通过这次事件可以看出,Karpenter社区对性能问题响应迅速,后续版本中应持续关注资源使用效率的优化。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0121AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









