在dotnet/extensions项目中为JSON Schema生成添加DataAnnotations支持
在当今的微服务架构和API开发中,JSON Schema作为数据验证和文档化的标准工具变得越来越重要。特别是在AI和机器学习领域,JSON Schema能够帮助语言模型更好地理解数据结构约束,从而生成更准确的请求参数。本文将深入探讨如何在dotnet/extensions项目中为JSON Schema生成添加对System.ComponentModel.DataAnnotations的支持。
背景与现状
目前,dotnet/extensions项目中的AIFunction基础设施在生成JSON Schema时,无法识别.NET中常用的验证特性(如Range、Required、StringLength等)。这意味着开发者无法直接在工具参数上使用这些标准验证特性来表达约束条件,而必须手动实现运行时验证。
举例来说,当开发者定义如下记录类型时:
public record SimulationSettings(
[Range(-1, 10, ErrorMessage = "必须在-1到10之间")]
decimal MarketROR
);
当前系统生成的JSON Schema仅包含基本类型信息:
{
"marketROR": {
"type": "number"
}
}
技术实现方案
为了实现更完善的Schema生成,我们需要扩展AIJsonUtilities的功能,使其能够识别并转换常见的DataAnnotations特性为对应的JSON Schema验证约束。
需要支持的验证特性
- RangeAttribute:转换为"minimum"和"maximum"属性
- RequiredAttribute:确保参数出现在"required"数组中
- StringLengthAttribute:转换为"maxLength"属性
- RegularExpressionAttribute:转换为"pattern"属性
- EmailAddressAttribute:转换为"format": "email"
预期输出示例
改进后,上述示例应该生成包含验证约束的完整Schema:
{
"marketROR": {
"type": "number",
"minimum": -1,
"maximum": 10
}
}
技术优势与价值
- 标准化支持:与.NET生态系统的验证模式保持一致
- 开发体验提升:开发者可以使用熟悉的验证特性
- 客户端验证:MCP客户端可以在调用工具前验证输入
- 自文档化:Schema本身可以作为API契约的一部分
- 一致性:与ASP.NET Core、Minimal APIs等框架保持相同的行为
实现建议
在技术实现上,建议在AIJsonUtilities层添加对DataAnnotations的支持。这种设计有以下优势:
- 模块化:保持功能的独立性和可维护性
- 可扩展性:未来如果STJ(System.Text.Json)底层支持这些特性,可以轻松迁移
- 灵活性:可以根据项目需求定制特定的转换规则
总结
为JSON Schema生成添加DataAnnotations支持是一个能够显著提升开发体验和系统健壮性的改进。它不仅使验证逻辑更加声明式和集中化,还能帮助AI系统更好地理解数据约束,减少无效请求和错误处理的开销。对于使用dotnet/extensions项目的开发者来说,这将是一个值得期待的功能增强。
在未来的发展中,这种验证特性的支持还可以进一步扩展到更多场景,如OpenAPI规范生成、客户端代码生成等,为.NET生态系统的开发者提供更完整的开发体验。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









