在dotnet/extensions项目中为JSON Schema生成添加DataAnnotations支持
在当今的微服务架构和API开发中,JSON Schema作为数据验证和文档化的标准工具变得越来越重要。特别是在AI和机器学习领域,JSON Schema能够帮助语言模型更好地理解数据结构约束,从而生成更准确的请求参数。本文将深入探讨如何在dotnet/extensions项目中为JSON Schema生成添加对System.ComponentModel.DataAnnotations的支持。
背景与现状
目前,dotnet/extensions项目中的AIFunction基础设施在生成JSON Schema时,无法识别.NET中常用的验证特性(如Range、Required、StringLength等)。这意味着开发者无法直接在工具参数上使用这些标准验证特性来表达约束条件,而必须手动实现运行时验证。
举例来说,当开发者定义如下记录类型时:
public record SimulationSettings(
[Range(-1, 10, ErrorMessage = "必须在-1到10之间")]
decimal MarketROR
);
当前系统生成的JSON Schema仅包含基本类型信息:
{
"marketROR": {
"type": "number"
}
}
技术实现方案
为了实现更完善的Schema生成,我们需要扩展AIJsonUtilities的功能,使其能够识别并转换常见的DataAnnotations特性为对应的JSON Schema验证约束。
需要支持的验证特性
- RangeAttribute:转换为"minimum"和"maximum"属性
- RequiredAttribute:确保参数出现在"required"数组中
- StringLengthAttribute:转换为"maxLength"属性
- RegularExpressionAttribute:转换为"pattern"属性
- EmailAddressAttribute:转换为"format": "email"
预期输出示例
改进后,上述示例应该生成包含验证约束的完整Schema:
{
"marketROR": {
"type": "number",
"minimum": -1,
"maximum": 10
}
}
技术优势与价值
- 标准化支持:与.NET生态系统的验证模式保持一致
- 开发体验提升:开发者可以使用熟悉的验证特性
- 客户端验证:MCP客户端可以在调用工具前验证输入
- 自文档化:Schema本身可以作为API契约的一部分
- 一致性:与ASP.NET Core、Minimal APIs等框架保持相同的行为
实现建议
在技术实现上,建议在AIJsonUtilities层添加对DataAnnotations的支持。这种设计有以下优势:
- 模块化:保持功能的独立性和可维护性
- 可扩展性:未来如果STJ(System.Text.Json)底层支持这些特性,可以轻松迁移
- 灵活性:可以根据项目需求定制特定的转换规则
总结
为JSON Schema生成添加DataAnnotations支持是一个能够显著提升开发体验和系统健壮性的改进。它不仅使验证逻辑更加声明式和集中化,还能帮助AI系统更好地理解数据约束,减少无效请求和错误处理的开销。对于使用dotnet/extensions项目的开发者来说,这将是一个值得期待的功能增强。
在未来的发展中,这种验证特性的支持还可以进一步扩展到更多场景,如OpenAPI规范生成、客户端代码生成等,为.NET生态系统的开发者提供更完整的开发体验。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00