DI-engine中多进程环境下语义模型初始化的解决方案
背景介绍
在使用DI-engine框架进行强化学习训练时,我们经常会遇到需要自定义环境的情况。特别是在计算机视觉相关任务中,环境观测可能不仅包含RGB图像,还需要语义分割图等高级视觉信息。本文将探讨在DI-engine框架下,如何在多进程环境中正确初始化和使用语义分割模型。
问题描述
在单进程模式下,我们可以直接在环境类的__init__方法中初始化语义分割模型(如Mask R-CNN),并在reset和step方法中调用该模型获取语义分割结果。这种模式在BaseEnvManagerV2环境下工作正常。
然而,当我们尝试使用多进程来加速训练过程,将环境管理器切换为SubprocessEnvManagerV2时,会遇到一个关键错误:"Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method"。
问题分析
这个问题的根源在于Python的多进程处理机制。默认情况下,Python使用fork方式创建子进程,这种方式会复制父进程的所有资源,包括CUDA上下文。然而,CUDA并不支持在fork的子进程中重新初始化,这会导致上述错误。
解决方案
要解决这个问题,我们需要将子进程的创建方式从fork改为spawn。spawn方式会启动一个新的Python解释器,并只继承必要的资源,避免了CUDA上下文复制的问题。
具体实现方法是在主程序中设置多进程的启动方式:
import multiprocessing as mp
if __name__ == '__main__':
mp.set_start_method('spawn')
# 后续的DI-engine初始化代码
my_env_ppo_create_config = dict(
env_manager=dict(type='subprocess'),
policy=dict(type='ppo'),
)
collector_env = SubprocessEnvManagerV2(
env_fn=[ding_env_maker for _ in range(cfg.env.collector_env_num)],
cfg=cfg.env.manager
)
# 其他初始化代码...
注意事项
-
set_start_method必须在主程序的if __name__ == '__main__':块中调用,且只能调用一次。 -
使用
spawn方式创建进程会比fork方式稍慢,因为需要重新导入模块和初始化环境。 -
确保你的语义分割模型在子进程中能够正确访问GPU资源,必要时需要在每个子进程中重新初始化模型。
-
如果语义分割模型较大,考虑使用共享内存或其他机制来减少内存占用。
最佳实践
对于需要在多进程环境中使用深度学习模型的情况,建议:
-
将模型初始化代码放在环境类的
__init__方法中,但确保主程序已设置spawn启动方式。 -
考虑使用模型缓存或共享机制,避免每个子进程都加载独立的模型副本。
-
对于计算密集型的模型推理,可以考虑使用专门的推理服务,而不是在每个子进程中运行模型。
总结
在DI-engine框架下使用多进程环境时,正确处理CUDA相关模型的初始化是关键。通过将多进程启动方式设置为spawn,我们可以避免CUDA上下文复制的问题,同时获得多进程带来的性能提升。这一解决方案不仅适用于语义分割模型,也适用于其他需要CUDA加速的深度学习模型在多进程环境中的使用场景。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00