Isaac-GR00T项目中LoRA微调时的显存优化实践
2025-06-22 15:39:33作者:农烁颖Land
问题背景
在使用NVIDIA Isaac-GR00T项目进行LoRA微调时,开发者可能会遇到显存不足的问题。特别是在RTX 3090 24GB这样的高端显卡上,即使采用参数高效的LoRA微调方法,也可能出现"非法内存访问"错误。
问题分析
LoRA(Low-Rank Adaptation)是一种高效的微调方法,它通过冻结预训练模型的大部分参数,只训练少量低秩矩阵来适配新任务。理论上,这种方法应该大大降低显存需求。但在实际应用中,我们发现:
- 即使LoRA只训练0.11%的参数(约256万个可训练参数),显存占用仍然可能超出预期
- 错误通常发生在训练循环开始阶段,提示"非法内存访问"
- 显存监控显示仅使用了8GB显存就出现错误,这显然不合理
解决方案
经过实践验证,我们发现以下配置在RTX 3090上表现良好:
- 调整LoRA参数:将LoRA的rank值从8提升到64,alpha值保持128
- 优化批次大小:将批次大小从8调整为24(32会导致OOM)
- 正确安装依赖:确保使用
pip install -e .方式安装项目依赖
技术原理
这种现象可能与PyTorch的显存分配策略有关。当使用较小的批次大小时:
- PyTorch可能无法有效利用显存
- 显存碎片化可能导致看似"足够"的显存无法被有效利用
- LoRA的低秩矩阵大小直接影响显存占用,适当增大rank值可能反而优化了显存使用模式
最佳实践建议
基于我们的经验,建议:
- 在RTX 3090上,LoRA rank值设置在64左右较为合适
- 批次大小可以尝试24-28的范围
- 使用
nvidia-smi实时监控显存使用情况 - 考虑使用梯度累积来模拟更大的批次大小
总结
在Isaac-GR00T项目中进行LoRA微调时,显存优化需要综合考虑LoRA参数设置和批次大小的平衡。通过合理配置这些参数,可以在保持训练效果的同时最大化硬件利用率。对于类似问题,建议开发者从调整LoRA rank和批次大小入手,逐步找到最适合自己硬件的配置。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C093
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19