QwenLM/Qwen3项目中vLLM部署Qwen1.5-110B-Chat模型的技术实践
2025-05-12 06:38:13作者:廉彬冶Miranda
在QwenLM/Qwen3项目中,部署最新的大规模语言模型Qwen1.5-110B-Chat是一个值得关注的技术实践。本文将深入探讨如何利用vLLM框架高效部署这一超大规模模型,特别是其量化版本的应用。
模型部署背景
Qwen1.5-110B-Chat作为通义千问系列的最新成员,拥有1100亿参数的庞大规模,这对部署环境提出了极高要求。传统的部署方式往往面临显存占用大、推理速度慢等问题,而vLLM框架的出现为解决这些问题提供了新的思路。
vLLM框架优势
vLLM是一个专为大规模语言模型设计的高效推理框架,其核心优势在于:
- 创新的PagedAttention技术,显著提高显存利用率
- 支持连续批处理,提升吞吐量
- 优化的KV缓存管理,降低显存需求
量化版本部署
对于Qwen1.5-110B-Chat这样的超大规模模型,量化技术是降低部署门槛的关键。项目提供了基于AWQ(激活感知权重量化)的int4量化版本,该技术能够在保持模型精度的同时,将显存需求降低至原来的1/4左右,使得110B参数的模型可以在消费级GPU上运行。
部署实践要点
- 环境准备:需要配置CUDA环境,建议使用最新版本的PyTorch和vLLM
- 模型加载:vLLM支持直接从HuggingFace加载量化模型
- 推理优化:合理设置batch_size和max_seq_len参数以平衡吞吐量和延迟
- 服务部署:可通过vLLM内置的API服务快速搭建推理端点
性能考量
在实际部署中,需要特别关注:
- 显存占用与计算效率的平衡
- 量化带来的精度损失评估
- 长文本处理能力
- 多轮对话的上下文管理
应用场景
经过优化的Qwen1.5-110B-Chat模型可应用于:
- 企业级对话系统
- 复杂任务规划
- 知识密集型问答
- 创意内容生成
总结
通过vLLM框架部署Qwen1.5-110B-Chat模型,特别是其量化版本,为在有限硬件资源下运行超大规模语言模型提供了可行方案。这一实践不仅展示了当前大模型部署的最新技术,也为相关领域的研究者和开发者提供了有价值的参考。随着量化技术的不断进步,未来我们有望看到更多大规模模型在边缘设备上的应用。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
330
395
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
165
暂无简介
Dart
766
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
351