Python Progressbar 使用指南
2024-09-10 19:44:28作者:曹令琨Iris
概览
Python Progressbar 是一个用于在命令行界面展示进度条的库,它极大地提升了用户对长时间运行任务的感知体验。该项目源自Google Code,经过fork并持续维护,确保了其兼容性和活跃性。其灵活的自定义特性,使得开发者可以通过多种小部件(Widgets)定制进度条的展现形式。
项目目录结构及介绍
以下是基于 https://github.com/wolph/python-progressbar.git 的典型项目目录结构示例:
python-progressbar/
├── AUTHORS.txt # 作者信息
├── CHANGELOG.md # 更新日志
├── INSTALL.rst # 安装指南
├── LICENSE.txt # 许可证文件
├── MANIFEST.in # 包含在源码发布中的额外文件清单
├── Makefile # Makefile,用于简化构建过程
├──进步条.py # 主要的进度条实现文件,这里假设为示例文件名
├── progressbar # 包含进度条模块的主目录
│ ├── __init__.py # 包初始化文件
│ └── ... # 其他相关模块文件
├── requirements.txt # 项目依赖列表
├── setup.cfg # 配置文件,用于`setuptools`的配置
├── setup.py # 安装脚本
└── tests # 测试目录,包含单元测试等
└── ...
说明:
- 进步条.py: 在此示例中代表用户应关注的主要入口点或演示文件。
- progressbar: 包目录,存储核心功能的Python模块。
- setup.py: 用于安装包到Python环境的脚本。
- tests: 包含单元测试,帮助保证代码质量。
项目的启动文件介绍
虽然实际的“启动”文件可能取决于你的具体应用场景,但通常不需要直接编写一个新的启动文件来使用Progressbar。相反,通过导入progressbar模块并在需要跟踪进度的地方调用相应的函数或创建ProgressBar实例来使用。例如,在一个简单的脚本开始时引入必要的模块并使用进度条:
from progressbar import ProgressBar
# 示例使用
total_items = 100
with ProgressBar(max_value=total_items) as bar:
for i in range(total_items):
# 执行任务
bar.update(i + 1)
项目的配置文件介绍
Python Progressbar本身并不直接使用一个传统的配置文件来管理其行为。它的配置更多是通过代码中的参数和选项来进行的。这意味着,如果你想改变进度条的样式或行为,你将在你的脚本中直接设置这些选项,比如定义widgets列表来控制显示哪些信息组件。
然而,如果你希望在多个地方复用特定的进度条配置,你可以创建一个配置模块或使用环境变量等方式间接配置,例如:
# config.py
progressbar_config = {
'widgets': ['Percentage(): ', '%(percentage)2.1f%%', ' ',
'Progress: ', '%(bar)s', ' ',
'ETA: ', '%(eta_td)s']
}
# 在其他脚本中引用配置
from config import progressbar_config
...
with ProgressBar(**progressbar_config) as bar:
for i in range(total_items):
# 任务逻辑
bar.update(i)
这样的配置方式虽非直接由项目自身提供的配置文件,但提供了灵活性,允许你在不修改原始代码的基础上调整进度条的表现。
以上就是关于Python Progressbar的基本指导,包括理解其目录结构、启动原理以及如何通过代码进行配置。记住,实践是学习的关键,尝试在不同场景下应用这些知识,以更好地掌握这一工具。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0113
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
432
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
351
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
689
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
79
37
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
671