AIC21-MTMC: 城市规模多摄像头车辆追踪实战教程
2024-09-12 01:43:05作者:翟萌耘Ralph
项目介绍
AIC21-MTMC 是2021年NVIDIA AI City Challenge第三赛道的冠军解决方案,专注于城市尺度的多摄像头车辆追踪。该方案结合了高效的检测、重新识别(ReID)以及轨迹聚类算法,在城市场景下实现车辆的跨摄像头追踪。项目基于Python,利用了YOLOv5作为基础的车辆检测器,并开发了一系列定制化的算法以提升跨相机车辆匹配的准确率。
项目快速启动
环境准备
-
安装依赖: 确保你的环境已配置好Python 3.8及以上版本,并通过运行以下命令安装必要的库。
pip install -r requirements.txt
-
数据准备: 从AI City Challenge下载
AIC21_Track3_MTMC_Tracking
数据集,并按照项目文档放置到指定目录。
运行项目
项目的核心脚本位于run_mcmt.sh
,它整合了从检测到结果生成的整个流程:
#!/bin/bash
MCMT_CONFIG_FILE="aic_mcmt.yml"
# 运行检测
cd detector/python
gen_images_aic.py $[MCMT_CONFIG_FILE]
cd ../yolov5/
./gen_det.sh $[MCMT_CONFIG_FILE]
# 提取ReID特征
cd ../../reid/
python extract_image_feat.py "aic_reid1_yml"
# ... (其他ReID步骤)
python merge_reid_feat.py $[MCMT_CONFIG_FILE]
# 进行多目标追踪
cd ../tracker/MOTBaseline
./run_aic.sh $[MCMT_CONFIG_FILE]
# 结果融合与输出
cd ../../../reid/reid-matching/tools/
python trajectory_fusion.py $[MCMT_CONFIG_FILE]
python sub_cluster.py $[MCMT_CONFIG_FILE]
python gen_res.py $[MCMT_CONFIG_FILE]
请注意,实际使用时需替换上述脚本中的$[MCMT_CONFIG_FILE]
为具体的配置文件路径或名称,并确保各部分按顺序执行。
应用案例和最佳实践
该方案尤其适用于城市交通管理场景,通过部署在关键路口的摄像头网络,实现对车辆的持续追踪,从而优化交通流分析、事故检测等。最佳实践包括:
- 优化检测器: 根据特定环境微调YOLOv5模型,提高在城市复杂环境中的检测精度。
- 定制ReID模型训练: 使用赛道提供的或自己的车辆图像数据来训练ReID模型,强化车型、颜色等特性识别,减少误匹配。
- 策略应用: 在实际部署中,根据实地考察调整TFS、DBTM和SCAC策略的参数,以适应不同的交通模式和环境条件。
典型生态项目
- 集成到智能交通系统(ITS): AIC21-MTMC的解决方案可以融入智能交通监控体系,帮助识别交通堵塞、违法停车,甚至支持自动驾驶车辆的决策支持。
- 安全监控升级: 在公共安全领域,此类技术用于追踪可疑车辆,提高应急响应效率。
- 城市规划与分析: 分析车辆流向,为公共交通规划、交通信号控制优化提供数据支持。
通过深入理解和实践AIC21-MTMC,开发者和研究人员能够在智能城市建设和交通管理中探索更多可能性。记得在使用过程中遵守数据隐私与伦理规范,保护个人隐私。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5