AIC21-MTMC: 城市规模多摄像头车辆追踪实战教程
2024-09-12 20:47:00作者:翟萌耘Ralph
项目介绍
AIC21-MTMC 是2021年NVIDIA AI City Challenge第三赛道的冠军解决方案,专注于城市尺度的多摄像头车辆追踪。该方案结合了高效的检测、重新识别(ReID)以及轨迹聚类算法,在城市场景下实现车辆的跨摄像头追踪。项目基于Python,利用了YOLOv5作为基础的车辆检测器,并开发了一系列定制化的算法以提升跨相机车辆匹配的准确率。
项目快速启动
环境准备
-
安装依赖: 确保你的环境已配置好Python 3.8及以上版本,并通过运行以下命令安装必要的库。
pip install -r requirements.txt
-
数据准备: 从AI City Challenge下载
AIC21_Track3_MTMC_Tracking
数据集,并按照项目文档放置到指定目录。
运行项目
项目的核心脚本位于run_mcmt.sh
,它整合了从检测到结果生成的整个流程:
#!/bin/bash
MCMT_CONFIG_FILE="aic_mcmt.yml"
# 运行检测
cd detector/python
gen_images_aic.py $[MCMT_CONFIG_FILE]
cd ../yolov5/
./gen_det.sh $[MCMT_CONFIG_FILE]
# 提取ReID特征
cd ../../reid/
python extract_image_feat.py "aic_reid1_yml"
# ... (其他ReID步骤)
python merge_reid_feat.py $[MCMT_CONFIG_FILE]
# 进行多目标追踪
cd ../tracker/MOTBaseline
./run_aic.sh $[MCMT_CONFIG_FILE]
# 结果融合与输出
cd ../../../reid/reid-matching/tools/
python trajectory_fusion.py $[MCMT_CONFIG_FILE]
python sub_cluster.py $[MCMT_CONFIG_FILE]
python gen_res.py $[MCMT_CONFIG_FILE]
请注意,实际使用时需替换上述脚本中的$[MCMT_CONFIG_FILE]
为具体的配置文件路径或名称,并确保各部分按顺序执行。
应用案例和最佳实践
该方案尤其适用于城市交通管理场景,通过部署在关键路口的摄像头网络,实现对车辆的持续追踪,从而优化交通流分析、事故检测等。最佳实践包括:
- 优化检测器: 根据特定环境微调YOLOv5模型,提高在城市复杂环境中的检测精度。
- 定制ReID模型训练: 使用赛道提供的或自己的车辆图像数据来训练ReID模型,强化车型、颜色等特性识别,减少误匹配。
- 策略应用: 在实际部署中,根据实地考察调整TFS、DBTM和SCAC策略的参数,以适应不同的交通模式和环境条件。
典型生态项目
- 集成到智能交通系统(ITS): AIC21-MTMC的解决方案可以融入智能交通监控体系,帮助识别交通堵塞、违法停车,甚至支持自动驾驶车辆的决策支持。
- 安全监控升级: 在公共安全领域,此类技术用于追踪可疑车辆,提高应急响应效率。
- 城市规划与分析: 分析车辆流向,为公共交通规划、交通信号控制优化提供数据支持。
通过深入理解和实践AIC21-MTMC,开发者和研究人员能够在智能城市建设和交通管理中探索更多可能性。记得在使用过程中遵守数据隐私与伦理规范,保护个人隐私。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8