AIC21-MTMC: 城市规模多摄像头车辆追踪实战教程
2024-09-12 01:41:14作者:翟萌耘Ralph
项目介绍
AIC21-MTMC 是2021年NVIDIA AI City Challenge第三赛道的冠军解决方案,专注于城市尺度的多摄像头车辆追踪。该方案结合了高效的检测、重新识别(ReID)以及轨迹聚类算法,在城市场景下实现车辆的跨摄像头追踪。项目基于Python,利用了YOLOv5作为基础的车辆检测器,并开发了一系列定制化的算法以提升跨相机车辆匹配的准确率。
项目快速启动
环境准备
-
安装依赖: 确保你的环境已配置好Python 3.8及以上版本,并通过运行以下命令安装必要的库。
pip install -r requirements.txt -
数据准备: 从AI City Challenge下载
AIC21_Track3_MTMC_Tracking数据集,并按照项目文档放置到指定目录。
运行项目
项目的核心脚本位于run_mcmt.sh,它整合了从检测到结果生成的整个流程:
#!/bin/bash
MCMT_CONFIG_FILE="aic_mcmt.yml"
# 运行检测
cd detector/python
gen_images_aic.py $[MCMT_CONFIG_FILE]
cd ../yolov5/
./gen_det.sh $[MCMT_CONFIG_FILE]
# 提取ReID特征
cd ../../reid/
python extract_image_feat.py "aic_reid1_yml"
# ... (其他ReID步骤)
python merge_reid_feat.py $[MCMT_CONFIG_FILE]
# 进行多目标追踪
cd ../tracker/MOTBaseline
./run_aic.sh $[MCMT_CONFIG_FILE]
# 结果融合与输出
cd ../../../reid/reid-matching/tools/
python trajectory_fusion.py $[MCMT_CONFIG_FILE]
python sub_cluster.py $[MCMT_CONFIG_FILE]
python gen_res.py $[MCMT_CONFIG_FILE]
请注意,实际使用时需替换上述脚本中的$[MCMT_CONFIG_FILE]为具体的配置文件路径或名称,并确保各部分按顺序执行。
应用案例和最佳实践
该方案尤其适用于城市交通管理场景,通过部署在关键路口的摄像头网络,实现对车辆的持续追踪,从而优化交通流分析、事故检测等。最佳实践包括:
- 优化检测器: 根据特定环境微调YOLOv5模型,提高在城市复杂环境中的检测精度。
- 定制ReID模型训练: 使用赛道提供的或自己的车辆图像数据来训练ReID模型,强化车型、颜色等特性识别,减少误匹配。
- 策略应用: 在实际部署中,根据实地考察调整TFS、DBTM和SCAC策略的参数,以适应不同的交通模式和环境条件。
典型生态项目
- 集成到智能交通系统(ITS): AIC21-MTMC的解决方案可以融入智能交通监控体系,帮助识别交通堵塞、违法停车,甚至支持自动驾驶车辆的决策支持。
- 安全监控升级: 在公共安全领域,此类技术用于追踪可疑车辆,提高应急响应效率。
- 城市规划与分析: 分析车辆流向,为公共交通规划、交通信号控制优化提供数据支持。
通过深入理解和实践AIC21-MTMC,开发者和研究人员能够在智能城市建设和交通管理中探索更多可能性。记得在使用过程中遵守数据隐私与伦理规范,保护个人隐私。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210