Parallel Hashmap在大规模数据集中的性能优化实践
2025-06-27 17:54:55作者:冯梦姬Eddie
parallel-hashmap
A family of header-only, very fast and memory-friendly hashmap and btree containers.
背景介绍
在使用Parallel Hashmap(phmap)实现LSH Forest数据结构时,遇到了处理超大规模数据集(8600万条2048维向量)的挑战。由于数据量远超内存容量,需要将哈希表分割存储到多个约6GB的文件中,并寻求更高效的序列化/反序列化方案。
技术挑战分析
项目中使用的哈希表类型为phmap::flat_hash_map<std::vector<uint8_t>, std::vector<uint32_t>>,这种结构存在两个主要性能瓶颈:
- 数据类型限制:标准库的
std::vector不是可平凡复制(trivially_copyable)类型,无法直接使用phmap内置的高效序列化功能 - 文件IO性能:每个文件的加载时间约4秒,对于需要频繁访问的场景来说性能不足
解决方案探索
方案一:改用std::array
仓库作者建议如果键值大小固定,可使用std::array替代std::vector。std::array是可平凡复制类型,能够利用phmap内置的phmap_dump功能实现高效序列化。
但实际场景中:
- 值部分存储的是动态变化的索引数据,必须使用动态容器
- 键部分虽然原始数据维度固定(2048),但经过哈希处理后大小会变化
方案二:自定义二进制存储
最终采用的解决方案是绕过序列化框架,直接实现自定义的二进制文件存储:
- 将哈希表内容手动写入二进制文件
- 运行时直接加载二进制数据
- 完全避免了序列化/反序列化开销
这种方案显著提升了IO性能,特别适合以下场景:
- 数据结构稳定,不频繁变更
- 需要极致的加载速度
- 数据量远超内存容量
技术启示
- 容器选择:在性能敏感场景中,固定大小容器(
std::array)比动态容器(std::vector)有优势 - 序列化权衡:通用序列化框架虽然方便,但特定场景下手写二进制IO可能更高效
- 内存管理:处理超大数据集时,分块存储和按需加载是必要策略
总结
通过这次优化实践,我们认识到在超大规模数据处理中,需要根据具体场景灵活选择技术方案。Parallel Hashmap提供了优秀的性能基础,但在极端场景下,结合自定义存储方案才能发挥最大效能。这也体现了系统设计中"没有银弹"的原则,需要根据实际需求做出合理权衡。
parallel-hashmap
A family of header-only, very fast and memory-friendly hashmap and btree containers.
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp博客页面工作坊中的断言方法优化建议2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析4 freeCodeCamp英语课程填空题提示缺失问题分析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp音乐播放器项目中的函数调用问题解析7 freeCodeCamp课程页面空白问题的技术分析与解决方案8 freeCodeCamp课程视频测验中的Tab键导航问题解析9 freeCodeCamp课程中屏幕放大器知识点优化分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 CVE-2024-38077伪代码修复版EXP资源详解:Windows远程桌面授权服务问题利用指南 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
241
2.38 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1 K
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
590
118
Ascend Extension for PyTorch
Python
79
112
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
56