dbt-core 1.10.0b1版本深度解析:数据建模工具的重大更新
dbt(data build tool)是一个开源的数据转换工具,它使数据分析师和工程师能够通过简单的SQL语句和YAML配置文件来转换仓库中的数据。dbt-core是该工具的核心组件,负责处理项目配置、依赖管理、模型构建等核心功能。
重大变更
在1.10.0b1版本中,最显著的破坏性变更是向工件元数据添加了invocations_started_at字段。这一变更意味着所有生成的工件(如manifest.json等)将包含一个新的时间戳字段,记录作业开始执行的时间。对于依赖这些工件的下游系统,需要做好兼容性准备。
核心功能增强
历史记录功能改进
新版本引入了hard_deletes="new_record"模式用于历史记录,这为数据历史记录提供了更灵活的选项。传统历史记录只能标记删除记录或保留它们,而新模式允许在删除时创建一条新记录来标记删除状态,这对于某些审计场景特别有价值。
微批处理优化
1.10.0b1版本对微批处理功能进行了多项改进:
- 新增
batch上下文对象,可在模型Jinja模板中访问当前批次信息 - 确保pre/post钩子只在第一个/最后一个批次执行,避免重复操作
- 修复了单批次情况下额外执行"最后"批次的问题
- 改进了微批处理的线程管理,避免主线程阻塞
数据新鲜度计算重构
传统的数据新鲜度计算方式被重构为基于SQL查询的实现,这带来了更好的性能和灵活性。同时新增了模型级别的freshness定义,为自适应作业提供了更细粒度的控制。
文档块支持
文档管理方面,现在manifest中会包含节点和列的文档块信息,这使得文档的集中管理和检索更加方便。
采样模式初步实现
1.10.0b1引入了采样模式的初始实现,这是一个重要的新特性:
- 支持通过CLI参数控制采样
- 允许对引用的种子数据进行采样
- 支持在build命令中使用采样模式
- 支持对历史记录依赖节点进行采样
性能优化与问题修复
性能提升
- 改进了
add_test_edges()的性能特征 - 优化了
select_children()和select_parents()函数,提升选择性能 - 实现了对YAML文件中单数数据测试配置的部分解析
重要问题修复
- 修复了dbt retry不遵守--threads参数的问题
- 修正了微批处理模式下dbt list --output json的输出格式
- 修复了generic test配置中自定义字段的处理问题
- 解决了历史记录新YAML格式的解析错误
- 修正了PartialSuccess状态的非零退出码问题
架构改进
在底层架构方面,1.10.0b1版本进行了多项优化:
- 创建了无操作的exposure运行器
- 新增了LogNodeResult事件
- 改进了组信息的日志记录
- 在profile.py中添加了二级配置文件支持
开发者体验
对于插件开发者,需要注意依赖的dbt-semantic-interfaces已升级至0.8.3版本,新增了对offset窗口中自定义粒度的支持。同时,错误处理更加规范,当在run operation命令中找不到宏时,会抛出更具体的UndefinedMacroError而非通用的DbtInternalException。
总结
dbt-core 1.10.0b1版本带来了多项重要更新,特别是在微批处理优化、采样模式实现和数据新鲜度计算方面。这些改进不仅增强了功能,也提升了性能和稳定性。对于现有用户,需要注意invocations_started_at字段的添加这一破坏性变更,并评估其对工作流程的影响。新引入的采样模式为大数据量环境下的开发和测试提供了新的可能性,值得重点关注。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00