Hi-FT/ERD项目模型微调指南:从COCO到Cityscapes的迁移学习实践
2025-06-19 04:52:34作者:宣海椒Queenly
前言
在计算机视觉领域,迁移学习已成为提升模型在新数据集上性能的关键技术。本文将详细介绍如何在Hi-FT/ERD项目中对预训练模型进行微调,特别是针对Cityscapes等特定场景数据集的适配过程。
模型微调的基本原理
模型微调(Fine-tuning)是指利用在大规模数据集(如COCO)上预训练的模型权重作为起点,通过在小规模特定数据集上继续训练,使模型适应新任务的过程。这种方法相比从头训练具有三大优势:
- 训练时间大幅缩短
- 数据需求显著降低
- 模型性能通常更好
准备工作
数据集准备
在开始微调前,需要确保目标数据集已按项目要求格式准备就绪。对于Cityscapes数据集,需要特别注意:
- 图像分辨率较高(2048×1024)
- 包含8个实例分割类别
- 需要将原始标注转换为项目支持的格式
基础环境配置
确保已正确安装项目所需依赖,包括深度学习框架和相关计算机视觉库。建议使用支持CUDA的GPU环境以获得最佳训练效率。
配置文件详解
基础配置继承
项目采用模块化的配置设计,通过继承机制避免重复配置:
_base_ = [
'../_base_/models/mask-rcnn_r50_fpn.py',
'../_base_/datasets/cityscapes_instance.py',
'../_base_/default_runtime.py',
'../_base_/schedules/schedule_1x.py'
]
这种设计实现了:
- 模型架构与Mask R-CNN保持一致
- 数据集配置继承Cityscapes预设
- 运行时配置采用默认设置
- 训练计划基于1x方案
模型头部调整
关键修改点是调整输出层类别数,使其匹配新数据集:
model = dict(
roi_head=dict(
bbox_head=dict(num_classes=8),
mask_head=dict(num_classes=8)
)
)
注意:仅修改类别数时,预训练权重的大部分层(除最后的预测头外)都能被有效复用。
训练策略优化
微调阶段需要特殊的学习率策略:
# 学习率设置为原值的1/10
optim_wrapper = dict(optimizer=dict(lr=0.01))
# 采用线性预热策略
param_scheduler = [
dict(type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(type='MultiStepLR', milestones=[7], gamma=0.1)
]
# 训练周期缩减为8个epoch
train_cfg = dict(max_epochs=8)
这种配置考虑了:
- 小学习率避免破坏预训练特征
- 线性预热稳定训练初期
- 较短训练周期防止过拟合
预训练模型加载
推荐从官方提供的模型库中获取合适的预训练权重:
load_from = 'mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.pth'
使用提示:
- 建议提前下载权重文件
- 确认模型版本与代码兼容
- 检查MD5校验和确保文件完整
微调效果评估
成功的微调通常表现出以下特征:
- 训练损失快速收敛
- 验证指标稳步提升
- 最终mAP接近或超过原数据集表现
对于Cityscapes数据集,预期能达到:
- 边界框mAP ≥ 0.35
- 掩码mAP ≥ 0.30 (具体数值取决于实际训练条件和参数调整)
常见问题排查
-
损失不下降:
- 检查学习率是否合适
- 验证数据加载是否正确
- 确认预训练权重加载无误
-
过拟合现象:
- 增加数据增强
- 减少训练周期
- 尝试更小的学习率
-
显存不足:
- 减小批次大小
- 使用梯度累积
- 尝试混合精度训练
进阶技巧
- 分层学习率:对骨干网络和检测头设置不同学习率
- 权重冻结:初期冻结骨干网络只训练检测头
- 数据增强:针对城市场景添加特定增强策略
结语
通过本指南,您应该已经掌握了在Hi-FT/ERD项目中进行模型微调的核心方法。实际应用中,建议从小规模实验开始,逐步调整参数,最终获得在新数据集上的最佳性能。记住,微调既是科学也是艺术,需要结合理论指导和实践经验。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30