Hatch构建工具中SDist包大小优化实践
2025-06-02 00:44:33作者:范垣楠Rhoda
在Python包开发过程中,构建工具的选择和配置直接影响着最终发布包的质量和效率。本文将以Hatch构建工具为例,深入探讨如何优化源代码分发包(SDist)的大小,特别是如何处理测试文件包含问题。
SDist包大小问题分析
许多开发者在使用Hatch构建Python包时发现,生成的源代码分发包(SDist)体积异常庞大,有时甚至达到几MB,而对应的wheel包却只有几十KB。这种现象的主要原因是Hatch默认会将项目目录下的所有文件都包含在SDist包中,包括测试目录和测试数据。
这种默认行为虽然保证了构建的完整性,但在实际发布场景中却带来了几个问题:
- 增加了用户下载时间和存储空间消耗
- 延长了CI/CD管道的构建时间
- 可能导致不必要的文件泄露风险
解决方案与实践
Hatch提供了灵活的配置选项来解决这个问题。通过在项目配置文件中添加特定设置,开发者可以精确控制哪些文件应该包含在SDist包中。
基础配置方案
最简单的解决方案是在项目的pyproject.toml文件中添加以下配置:
[tool.hatch.build.targets.sdist]
only-packages = true
exclude = [
"tests/",
]
这个配置实现了两个优化:
only-packages = true
确保只包含Python包目录exclude
列表显式排除了测试目录
配置选项详解
Hatch为SDist构建提供了几个关键配置参数:
- only-packages: 布尔值,设置为true时只包含被识别为Python包的目录
- exclude: 字符串列表,指定要从SDist中排除的文件模式
- include: 字符串列表,指定要显式包含的文件模式
进阶配置技巧
对于更复杂的项目结构,可以采用以下进阶配置策略:
[tool.hatch.build.targets.sdist]
only-packages = true
exclude = [
"tests/",
"benchmarks/",
"docs/",
"examples/",
"*.md",
"*.rst"
]
这种配置不仅排除了测试目录,还排除了文档、示例等非必要内容,进一步减小了包体积。
行业实践对比
值得注意的是,Hatch的这种默认包含所有文件的行为并非特例。其他主流Python构建工具如pypa/build和flit也采用了类似的默认策略。这种设计哲学源于Python打包生态对"完整源代码"的传统理解,即SDist应该包含重建包所需的一切内容。
然而,在实际项目维护中,开发者需要根据项目特点权衡完整性和效率。对于开源库,可能希望包含测试以便用户验证;而对于私有项目或纯发布场景,精简包体积可能更为重要。
最佳实践建议
基于项目实践,我们总结出以下建议:
- 对于公开的开源库,考虑保留测试文件但压缩测试数据
- 对于私有项目或纯发布场景,使用
only-packages
精简包内容 - 在CI/CD管道中,可以生成两个版本的SDist:一个完整版用于开发,一个精简版用于发布
- 定期检查SDist内容,确保没有意外包含敏感文件或大文件
通过合理配置Hatch构建选项,开发者可以在保证功能完整性的同时,显著优化包分发效率,提升用户体验。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
227
2.28 K

暂无简介
Dart
527
116

React Native鸿蒙化仓库
JavaScript
214
288

Ascend Extension for PyTorch
Python
69
101

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
102

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197