Faster-Whisper 语音转录中如何保留填充词和犹豫词
2025-05-14 11:25:04作者:宣海椒Queenly
在语音识别领域,填充词(如"um"、"ah"、"oh"、"uh"等)和犹豫词(disfluencies)是自然对话中的重要组成部分。这些词汇虽然看似无关紧要,但在某些应用场景中,如心理学研究、对话分析或语音行为研究中,保留这些词汇对分析结果至关重要。
Faster-Whisper 作为 Whisper 模型的高效实现版本,在默认配置下往往会过滤掉这些填充词和犹豫词。这是因为模型在训练时倾向于输出更"干净"的文本转录结果。然而,通过一些技术手段,我们可以调整模型的输出行为,使其保留这些重要的语音特征。
技术原理分析
Whisper 系列模型是基于大规模多语言数据训练的端到端语音识别系统。模型在处理语音时,会综合考虑语音信号的声学特征和语言模型概率,选择最可能的文本输出。填充词和犹豫词在训练数据中出现频率相对较低,且通常被视为"噪声",因此模型在默认参数下会倾向于忽略它们。
解决方案
1. 使用初始提示(init_prompt)
通过提供包含典型填充词的初始提示,可以引导模型在转录时更倾向于保留这类词汇。这种方法利用了语言模型的上下文学习能力,通过示例告诉模型在当前任务中需要保留这些特征。
init_prompt = "So uhm, yeaah. Okay, ehm, uuuh."
segments, info = model.transcribe(audio_path, init_prompt=init_prompt)
2. 调整解码参数
修改模型的解码参数可以影响其输出行为:
- 提高温度参数(temperature): 设置为接近1的值可以增加输出的多样性
- 调整beam_size: 增大beam搜索宽度可以让模型考虑更多可能的候选序列
- 使用热词(hotwords): 明确指定需要特别关注的词汇
segments, info = model.transcribe(
audio_path,
temperature=0.8,
beam_size=10,
hotwords=["um", "ah", "uh", "oh"]
)
3. 后处理增强
对于已经生成的转录文本,可以通过以下方法增强填充词的识别:
- 训练专门的填充词检测模型
- 使用基于规则的正则表达式匹配
- 结合声学特征分析定位可能的填充词位置
实践建议
- 模型选择:较大的模型(如large-v2)通常对细微语音特征的捕捉能力更强
- 音频预处理:避免过度处理音频,保留原始语音特征
- 分段策略:适当减小音频分段长度(如5-10秒)可以提高对短暂语音事件的识别
- 多模型融合:结合多个模型的输出结果,提高填充词识别率
总结
在Faster-Whisper中保留填充词和犹豫词需要综合考虑模型参数调整、提示工程和后期处理等多种技术手段。理解模型的工作原理并根据具体应用场景进行针对性优化,是获得理想转录结果的关键。随着语音识别技术的发展,对自然对话中非语言成分的识别能力也将不断提高,为更精细的话音分析提供支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1