GitVersion项目:如何防止主分支提交自动递增版本号
在软件开发过程中,版本控制是至关重要的环节。GitVersion作为一款流行的版本号自动生成工具,能够根据Git仓库的状态自动计算语义化版本号。然而,许多团队在使用GitVersion时会遇到一个常见问题:主分支(master)上的每次提交都会自动递增版本号,这与某些团队的版本管理策略不符。
问题背景
默认情况下,GitVersion采用GitFlow工作流,其中主分支的配置会导致每次提交后版本号自动递增。例如,当主分支上有一个标记为1.0.0的提交后,后续提交的版本号会变为1.0.1-1、1.0.1-2等。这种自动递增行为可能不符合某些团队希望完全通过标签控制主分支版本号的策略。
解决方案
要解决这个问题,我们需要完全自定义GitVersion的配置,覆盖默认的工作流设置。以下是关键配置步骤:
-
清空工作流模板:首先需要清空默认的工作流模板,通过设置
workflow: ''来实现。 -
配置版本号生成策略:明确指定版本号生成策略为
TaggedCommit,确保版本号完全基于标签。 -
禁用自动递增:在全局和分支级别都设置
increment: None,并禁用提交消息导致的版本递增。 -
自定义分支配置:为主分支(master)和发布分支(release)分别定义精确的行为。
完整配置示例
workflow: ''
assembly-versioning-scheme: MajorMinorPatch
assembly-file-versioning-scheme: MajorMinorPatchTag
assembly-informational-format: '{InformationalVersion}'
mode: ContinuousDelivery
increment: None
tag-prefix: '[v]'
commit-message-incrementing: Disabled
commit-date-format: 'yyyy-MM-dd'
tag-pre-release-weight: 60000
strategies: [TaggedCommit]
branches:
master:
regex: ^master$
label: ''
increment: None
track-merge-target: false
tracks-release-branches: false
is-release-branch: false
release:
regex: ^release?[/-]
label: beta
increment: None
track-merge-target: true
tracks-release-branches: true
is-release-branch: true
配置解析
-
workflow: '':清空默认工作流模板,从头开始定义配置。
-
strategies: [TaggedCommit]:指定版本号生成策略仅基于标签,忽略其他因素。
-
increment: None:全局禁用版本号自动递增功能。
-
master分支配置:
- 禁用标签(label)
- 禁用递增(increment: None)
- 关闭合并目标跟踪(track-merge-target: false)
-
release分支配置:
- 使用beta作为预发布标签
- 启用合并目标跟踪
- 标记为发布分支
效果验证
应用此配置后,主分支的版本号行为将变为:
- 标记为1.0.0的提交:1.0.0
- 后续提交1:1.0.0-1
- 后续提交2:1.0.0-2
- 后续提交3:1.0.0-3
这样就能确保主分支的正式版本号完全由标签控制,而不会因为提交而自动递增。
最佳实践建议
-
明确版本策略:在项目开始前,团队应明确版本号管理策略。
-
文档化配置:将GitVersion配置及其含义记录在项目文档中。
-
持续验证:在CI/CD流水线中加入版本号验证步骤,确保符合预期。
-
分支策略:考虑是否需要区分main和master分支,保持一致性。
通过这种配置方式,团队可以更精确地控制版本号的生成逻辑,使其完全符合项目的发布管理需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00