MiDaS模型转换至TFLite格式的技术实践与问题解决
2025-06-10 10:15:39作者:谭伦延
概述
本文将详细介绍如何将MiDaS深度估计模型从ONNX格式成功转换为TensorFlow Lite格式,并解决在移动端部署时遇到的常见问题。MiDaS是一个用于单目深度估计的深度学习模型,在计算机视觉领域有着广泛应用。
模型转换流程
初始问题发现
在最初的转换尝试中,开发者遇到了输入张量名称不匹配的问题。原始ONNX模型的输入张量名称为"0",这在TensorFlow生态中会导致KeyError异常。这是ONNX与TensorFlow模型格式差异导致的常见问题。
解决方案:输入张量重命名
通过修改ONNX模型的输入张量名称,我们成功解决了这一问题。具体操作包括:
- 创建名称映射关系,将"0"映射为"arg_0"
- 遍历模型输入并创建新的ValueInfoProto对象
- 清除旧输入并添加新输入
- 更新所有节点中的输入引用
这一步骤确保了模型在TensorFlow环境中能够正确识别输入张量。
格式转换过程
完成输入张量修正后,我们进行了以下转换步骤:
- 使用onnx-tf工具将ONNX模型转换为TensorFlow SavedModel格式
- 使用TFLiteConverter将SavedModel转换为TFLite格式
在转换过程中,我们注意到有约36.44%的操作未被直接转换,主要是arith.constant操作。这些操作在后续处理中被TensorFlow Lite运行时正确处理。
关键问题:输入维度顺序差异
在移动端部署时,我们发现模型输出结果异常。经过深入分析,发现问题根源在于输入张量的维度顺序:
- 原始TensorFlow Lite模型期望输入格式为(1, 3, 256, 256)(NCHW)
- 而MiDaS官方模型使用(1, 256, 256, 3)(NHWC)格式
这种维度顺序的不匹配导致了移动端推理结果的异常。
最佳实践解决方案
经过多次尝试,我们确定了以下最佳实践:
- 使用专门的onnx2tf转换工具,它能自动处理维度顺序转换
- 该工具默认将ONNX的NCHW格式转换为TensorFlow的NHWC格式
- 确保输入数据预处理与模型期望的格式一致
技术要点总结
- 模型格式转换:不同框架间的模型转换需要考虑张量命名、维度顺序等细节差异
- 输入预处理:必须确保推理时的输入数据格式与模型训练时一致
- 工具选择:专用转换工具能自动处理许多兼容性问题
- 移动端适配:在移动设备上部署时,需特别注意内存布局和计算精度
实施建议
对于希望在移动端部署MiDaS模型的开发者,建议:
- 优先使用经过验证的转换工具链
- 在转换后立即进行推理测试验证结果正确性
- 注意记录模型的输入输出规格
- 考虑量化选项以优化移动端性能
通过遵循这些实践,开发者可以成功将MiDaS深度估计模型部署到移动设备上,实现高效的实时深度估计应用。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp英语课程填空题提示缺失问题分析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp博客页面工作坊中的断言方法优化建议4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp论坛排行榜项目中的错误日志规范要求7 freeCodeCamp音乐播放器项目中的函数调用问题解析8 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析9 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析10 freeCodeCamp课程页面空白问题的技术分析与解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

React Native鸿蒙化仓库
C++
198
279

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
949
556

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
346
1.33 K