Harvester项目中双节点集群虚拟机迁移问题的分析与解决
问题背景
在Harvester虚拟化管理平台的双节点集群环境中,当管理员尝试将运行虚拟机的主机节点设置为维护模式时,发现虚拟机无法成功迁移到另一个节点。这个问题在三个节点的集群环境中并不存在,但在双节点配置下表现得尤为明显。
问题现象
当管理员将一个运行虚拟机的主机节点(n2-v15)设置为维护模式时,系统尝试将虚拟机迁移到集群中的另一个节点(n1-v15)。然而迁移过程会不断循环重试,最终失败。错误信息显示:"guest CPU doesn't match specification: missing features: vmx-exit-load-perf-global-ctrl,vmx-entry-load-perf-global-ctrl"。
根本原因分析
经过深入调查,发现这个问题与CPU特性兼容性有关。具体来说:
-
CPU特性不匹配:目标节点(n1-v15)缺少源节点(n2-v15)上虚拟机使用的某些CPU特性(vmx-exit-load-perf-global-ctrl和vmx-entry-load-perf-global-ctrl)。
-
默认CPU模型问题:当虚拟机没有显式设置CPU模型时,Harvester/KubeVirt会使用默认的CPU模型。在嵌套虚拟化环境中,这种默认配置可能导致迁移失败。
-
双节点集群特殊性:在三个节点的集群中,系统可能有更多选择来找到兼容的目标节点,而在双节点环境中,选择有限,问题更容易暴露。
解决方案
针对这个问题,社区提供了以下解决方案:
- 显式设置CPU模型:在虚拟机的配置中明确指定CPU模型为"host-passthrough",这将允许虚拟机直接使用宿主机的CPU特性。
spec:
domain:
cpu:
model: host-passthrough
-
重启虚拟机:在修改CPU模型配置后,需要重启虚拟机使配置生效。
-
维护模式操作:在确保虚拟机配置正确后,再进行节点维护模式操作。
技术原理
"host-passthrough"模式的工作原理是:
- 直接将物理CPU的所有特性暴露给虚拟机
- 避免了CPU特性过滤和模拟
- 在迁移时要求目标节点具有相同或兼容的CPU特性
- 在嵌套虚拟化环境中特别有用
最佳实践建议
对于Harvester用户,特别是在嵌套虚拟化环境中部署时,建议:
- 在创建虚拟机时,考虑显式设置CPU模型
- 对于需要高可用性的工作负载,建议使用三节点或更多节点的集群
- 在进行节点维护前,检查虚拟机的配置是否适合迁移
- 在测试环境中验证迁移过程,确保生产环境的稳定性
总结
Harvester双节点集群中的虚拟机迁移问题揭示了在虚拟化环境中CPU兼容性的重要性。通过合理配置CPU模型,用户可以避免这类迁移失败的问题。这也提醒我们,在生产环境中部署前,充分了解底层硬件特性和虚拟化配置的相互关系至关重要。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01