Fuel Core项目中的V1燃气价格算法优化策略
2025-04-30 18:35:40作者:蔡怀权
引言
在区块链系统中,燃气价格机制是确保网络正常运行和防止垃圾交易的关键组件。Fuel Core项目团队近期对其V1版本的燃气价格算法进行了重要优化,特别是在确定P(比例)和D(微分)参数方面采用了更先进的优化技术。
原有算法的问题
Fuel Core最初采用的是一种相对简单的随机采样方法来确定P和D参数:
- 随机生成多组P和D值
- 计算每组参数下的"误差"值
- 选择误差最小的那组参数作为最终结果
这种方法存在几个明显缺陷:
- 效率低下:需要测试大量随机组合才能找到较优解
- 可能错过最优解:随机采样无法保证找到全局最优
- 误差定义不合理:简单累加绝对利润可能导致数值溢出
优化方案
团队实施了以下改进措施:
梯度下降算法
在保留随机初始化的基础上,新增了梯度下降优化:
- 仍然进行随机采样获取初始参数
- 对每组初始参数应用梯度下降
- 沿着误差函数的负梯度方向逐步调整参数
- 最终选择误差最小的参数组合
这种方法结合了全局搜索和局部优化的优势,既避免了陷入局部极小值,又能精细调整找到更优解。
并行计算优化
通过多线程技术并行处理多组参数的计算:
- 同时评估多组参数的误差值
- 显著提高了优化过程的整体效率
- 使得在相同时间内可以测试更多参数组合
误差函数的重新定义
针对原有误差计算可能导致的数值溢出问题,团队重新考虑了误差的定义方式。虽然具体的新定义未在文中详述,但可以推测可能采用了以下改进之一:
- 使用相对误差而非绝对误差
- 引入对数变换处理大数值
- 采用归一化处理
技术实现要点
在实际实现中,需要注意几个关键点:
- 学习率选择:梯度下降中的学习率需要仔细调整,过大可能导致震荡,过小则收敛缓慢
- 停止条件:需要设置合理的收敛条件,如误差变化小于阈值或达到最大迭代次数
- 并行同步:多线程实现中要注意数据同步和资源竞争问题
- 数值稳定性:确保所有计算在数值上是稳定的,特别是处理区块链数据时
未来优化方向
虽然当前改进已经取得了良好效果,但仍有一些潜在的优化空间:
- 更高级的优化算法:可以考虑使用遗传算法、粒子群优化等全局优化方法
- 动态调整机制:根据网络状况实时调整P和D参数,而非静态设置
- 机器学习方法:利用历史数据训练模型预测最优参数
- 误差函数的进一步优化:设计更能反映系统真实目标的误差指标
结论
Fuel Core项目通过引入梯度下降和多线程优化,显著提升了V1燃气价格算法的参数确定效率和准确性。这种技术改进不仅解决了原有方法的局限性,也为未来更复杂的优化奠定了基础。区块链系统的经济模型优化是一个持续的过程,Fuel Core团队在这方面的探索为行业提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
148
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19