Fuel Core项目中的V1燃气价格算法优化策略
2025-04-30 11:27:15作者:蔡怀权
引言
在区块链系统中,燃气价格机制是确保网络正常运行和防止垃圾交易的关键组件。Fuel Core项目团队近期对其V1版本的燃气价格算法进行了重要优化,特别是在确定P(比例)和D(微分)参数方面采用了更先进的优化技术。
原有算法的问题
Fuel Core最初采用的是一种相对简单的随机采样方法来确定P和D参数:
- 随机生成多组P和D值
- 计算每组参数下的"误差"值
- 选择误差最小的那组参数作为最终结果
这种方法存在几个明显缺陷:
- 效率低下:需要测试大量随机组合才能找到较优解
- 可能错过最优解:随机采样无法保证找到全局最优
- 误差定义不合理:简单累加绝对利润可能导致数值溢出
优化方案
团队实施了以下改进措施:
梯度下降算法
在保留随机初始化的基础上,新增了梯度下降优化:
- 仍然进行随机采样获取初始参数
- 对每组初始参数应用梯度下降
- 沿着误差函数的负梯度方向逐步调整参数
- 最终选择误差最小的参数组合
这种方法结合了全局搜索和局部优化的优势,既避免了陷入局部极小值,又能精细调整找到更优解。
并行计算优化
通过多线程技术并行处理多组参数的计算:
- 同时评估多组参数的误差值
- 显著提高了优化过程的整体效率
- 使得在相同时间内可以测试更多参数组合
误差函数的重新定义
针对原有误差计算可能导致的数值溢出问题,团队重新考虑了误差的定义方式。虽然具体的新定义未在文中详述,但可以推测可能采用了以下改进之一:
- 使用相对误差而非绝对误差
- 引入对数变换处理大数值
- 采用归一化处理
技术实现要点
在实际实现中,需要注意几个关键点:
- 学习率选择:梯度下降中的学习率需要仔细调整,过大可能导致震荡,过小则收敛缓慢
- 停止条件:需要设置合理的收敛条件,如误差变化小于阈值或达到最大迭代次数
- 并行同步:多线程实现中要注意数据同步和资源竞争问题
- 数值稳定性:确保所有计算在数值上是稳定的,特别是处理区块链数据时
未来优化方向
虽然当前改进已经取得了良好效果,但仍有一些潜在的优化空间:
- 更高级的优化算法:可以考虑使用遗传算法、粒子群优化等全局优化方法
- 动态调整机制:根据网络状况实时调整P和D参数,而非静态设置
- 机器学习方法:利用历史数据训练模型预测最优参数
- 误差函数的进一步优化:设计更能反映系统真实目标的误差指标
结论
Fuel Core项目通过引入梯度下降和多线程优化,显著提升了V1燃气价格算法的参数确定效率和准确性。这种技术改进不仅解决了原有方法的局限性,也为未来更复杂的优化奠定了基础。区块链系统的经济模型优化是一个持续的过程,Fuel Core团队在这方面的探索为行业提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322