Harvester 集群在离线环境下的镜像上传与下载问题分析
问题背景
在离线环境(air-gapped)部署的Harvester集群中,用户尝试通过文件上传或内部URL下载方式创建虚拟机镜像时遇到了操作失败的情况。这个问题在标准网络环境下不会出现,但在离线部署场景下会稳定复现。
错误现象
当用户尝试创建镜像时,系统会返回以下错误信息:
Retry attempted 3/3 failed due to error: BackingImage.longhorn.io "vmi-2618f2cc-546a-4147-85ed-a33282cd9bc8" is invalid: spec.dataEngine: Unsupported value: "": supported values: "v1", "v2"
根本原因分析
经过深入排查,发现问题源于Longhorn组件的镜像版本不匹配:
- 
镜像拉取失败:Longhorn的三个关键组件(manager、share-manager和UI)在离线环境中无法正确获取,因为这些组件尝试拉取的是特定版本标签(v1.8.0)而非Harvester ISO中打包的版本(v1.8.x-head)。
 - 
Mutator功能失效:由于Longhorn manager未能正常运行,导致BackingImage资源的dataEngine字段无法被自动设置为默认值"v1"。这个字段是Longhorn v2数据引擎引入的新特性,必须明确指定为"v1"或"v2"。
 - 
离线环境特殊性:在标准网络环境中,系统可以自动拉取所需镜像;但在离线环境中,必须确保所有依赖镜像都已正确打包并部署到本地镜像仓库。
 
解决方案
要解决此问题,需要采取以下措施:
- 
手动部署正确的Longhorn镜像:将Longhorn v1.8.0的所有相关组件镜像手动部署到离线环境中,包括:
- longhornio/longhorn-manager
 - longhornio/longhorn-share-manager
 - longhornio/longhorn-ui
 
 - 
等待官方修复:Harvester团队正在准备Longhorn v1.8.1的集成,该版本将包含正确的镜像列表,从根本上解决此问题。
 
技术细节
当Longhorn manager正常运行时,它会通过Mutator webhook自动为BackingImage资源设置dataEngine字段的默认值"v1"。但在当前问题场景下,由于manager组件未能启动,这个自动化过程失效,导致API验证失败。
结论
这个问题凸显了在离线环境中部署云原生系统时版本管理和组件依赖的重要性。Harvester团队已经识别到问题根源,并将在后续版本中提供官方修复方案。对于急需在离线环境中使用此功能的用户,目前可以通过手动部署正确版本的Longhorn组件作为临时解决方案。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00