ntopng网络发现功能故障分析与修复
ntopng是一款流行的网络流量监控和分析工具,其网络发现功能对于网络管理员来说至关重要。近期发现ntopng的网络发现功能存在异常,本文将详细分析该问题的现象、原因以及解决方案。
问题现象
在ntopng执行网络发现功能时,系统控制台每5秒就会出现一次警告信息,同时发现进度在0%和10%之间反复跳转,无法正常完成网络发现过程。具体警告信息如下:
21/Jun/2024 11:16:19 [LuaEngine.cpp:702] WARNING: /home/data/lavoro/ntopng/scripts/lua/modules/xmlSimple.lua:90: XmlParser: trying to close eventSubURL with service [/home/data/lavoro/ntopng/scripts/callbacks/5second/system/network_discovery.lua]
技术分析
该问题主要涉及ntopng的XML解析模块和网络发现功能的交互过程。从警告信息可以看出:
-
XML解析异常:系统在解析XML文件时,尝试关闭一个名为"eventSubURL"的标签时出现了问题。这表明XML文件可能格式不正确或者解析逻辑存在缺陷。
-
定时回调冲突:问题出现在5秒定时回调执行的网络发现脚本中,这种周期性执行可能导致资源竞争或状态不一致。
-
Lua脚本交互:问题发生在Lua脚本与C++核心模块的交互边界处,具体是在LuaEngine.cpp中捕获到的异常。
根本原因
经过深入分析,该问题的根本原因在于:
-
XML解析器状态管理:XML解析器在处理某些特定格式的UPnP设备响应时,未能正确处理标签的嵌套关系,导致解析状态异常。
-
网络发现流程:网络发现过程中,系统未能正确处理设备发现的中间状态,导致进度反复重置。
-
定时任务机制:5秒定时任务的执行频率可能过高,导致前一次发现尚未完成就被新的发现请求中断。
解决方案
该问题已在最新版本中得到修复,主要改进包括:
-
XML解析增强:改进了xmlSimple.lua模块中的XML解析逻辑,增加了对异常标签嵌套情况的处理。
-
网络发现状态管理:优化了网络发现流程的状态管理机制,确保发现过程能够持续进行而不会被意外中断。
-
定时任务调整:调整了网络发现任务的调度策略,避免了高频任务导致的资源竞争问题。
验证结果
经过验证,修复后的版本已解决以下问题:
- 控制台不再出现XML解析相关的警告信息
- 网络发现进度能够正常递增,不再出现0%-10%的反复跳转
- 网络发现功能能够完整执行并返回正确结果
最佳实践建议
对于使用ntopng网络发现功能的用户,建议:
- 及时升级到最新版本以获得最稳定的网络发现体验
- 在网络发现期间避免执行其他高负载操作
- 定期检查系统日志,确保没有相关警告信息
- 对于大型网络,考虑分段执行网络发现以减少系统负载
通过以上改进和优化,ntopng的网络发现功能恢复了正常运作,能够为网络管理员提供准确、可靠的网络设备发现服务。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00