Milvus 集群环境下启用全量mmap参数导致加载OOM问题分析
问题背景
在Milvus 2.5版本集群环境中,当启用所有mmap(memory-mapped files)参数时,尝试加载包含多种向量类型和索引的集合(collection)时会出现内存不足(OOM)的错误。该问题在基准测试场景下尤为明显,涉及20M条包含多种向量类型的数据集。
问题现象
在特定配置下创建并加载一个包含以下特征的集合时会出现OOM:
- 包含多种向量字段:128维float向量、768维float向量、稀疏float向量、256维bfloat16向量
- 多种索引类型:HNSW、DISKANN、SPARSE_INVERTED_INDEX、IVF_SQ8、INVERTED
- 数据规模达到20M条记录
- 查询节点配置了32GB内存并启用了全量mmap参数
技术分析
mmap机制在Milvus中的应用
mmap(内存映射文件)是Milvus中用于优化内存使用的重要机制,它允许将磁盘文件直接映射到进程的地址空间,从而减少实际内存占用。在Milvus中,可以针对不同类型的字段和索引分别启用mmap:
- 向量字段mmap
- 向量索引mmap
- 标量字段mmap
- 标量索引mmap
问题根源
通过分析发现,导致OOM的主要原因有:
-
未索引的growing segment过多:在2.5版本中,由于增加了统计任务,导致产生了更多的growing segment(未索引段),这些段默认未启用mmap,会消耗大量实际内存。
-
内存配置不足:虽然启用了mmap,但DiskANN等索引类型仍会消耗一定量的实际内存,特别是在处理大规模数据集时。
-
加载顺序问题:现有实现中,段的加载顺序可能不是最优的,导致内存峰值过高。
解决方案
针对该问题,社区采取了以下解决方案:
-
启用growing segment的mmap:通过配置
queryNode.mmap.growingSegment
参数为true,可以显著减少growing segment的内存占用。 -
优化内存配置:根据实际数据规模和索引类型,适当增加查询节点的内存限制。对于20M级别的数据集,建议配置至少32GB内存。
-
调整加载顺序:优化段的加载顺序,优先加载大尺寸段,可以平滑内存使用曲线,避免瞬时峰值。
-
版本回退:在2.5版本中,发现某个PR(#40873)是导致该问题的直接原因,暂时回退该变更可以解决问题。
最佳实践建议
对于需要在生产环境中使用mmap功能的用户,建议:
- 根据数据规模合理配置节点内存,特别是查询节点
- 完整启用所有mmap参数,包括growing segment的mmap
- 监控内存使用情况,特别是加载过程中的内存峰值
- 对于特别大的数据集,考虑分批次加载或增加节点资源
- 关注Milvus版本更新,及时获取相关修复
总结
Milvus中的mmap机制虽然能有效降低内存占用,但在处理大规模数据集和多种索引类型时仍需谨慎配置。通过全面启用mmap参数、优化资源分配和加载策略,可以有效避免加载过程中的OOM问题,确保系统稳定运行。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









