Milvus 集群环境下启用全量mmap参数导致加载OOM问题分析
问题背景
在Milvus 2.5版本集群环境中,当启用所有mmap(memory-mapped files)参数时,尝试加载包含多种向量类型和索引的集合(collection)时会出现内存不足(OOM)的错误。该问题在基准测试场景下尤为明显,涉及20M条包含多种向量类型的数据集。
问题现象
在特定配置下创建并加载一个包含以下特征的集合时会出现OOM:
- 包含多种向量字段:128维float向量、768维float向量、稀疏float向量、256维bfloat16向量
- 多种索引类型:HNSW、DISKANN、SPARSE_INVERTED_INDEX、IVF_SQ8、INVERTED
- 数据规模达到20M条记录
- 查询节点配置了32GB内存并启用了全量mmap参数
技术分析
mmap机制在Milvus中的应用
mmap(内存映射文件)是Milvus中用于优化内存使用的重要机制,它允许将磁盘文件直接映射到进程的地址空间,从而减少实际内存占用。在Milvus中,可以针对不同类型的字段和索引分别启用mmap:
- 向量字段mmap
- 向量索引mmap
- 标量字段mmap
- 标量索引mmap
问题根源
通过分析发现,导致OOM的主要原因有:
-
未索引的growing segment过多:在2.5版本中,由于增加了统计任务,导致产生了更多的growing segment(未索引段),这些段默认未启用mmap,会消耗大量实际内存。
-
内存配置不足:虽然启用了mmap,但DiskANN等索引类型仍会消耗一定量的实际内存,特别是在处理大规模数据集时。
-
加载顺序问题:现有实现中,段的加载顺序可能不是最优的,导致内存峰值过高。
解决方案
针对该问题,社区采取了以下解决方案:
-
启用growing segment的mmap:通过配置
queryNode.mmap.growingSegment参数为true,可以显著减少growing segment的内存占用。 -
优化内存配置:根据实际数据规模和索引类型,适当增加查询节点的内存限制。对于20M级别的数据集,建议配置至少32GB内存。
-
调整加载顺序:优化段的加载顺序,优先加载大尺寸段,可以平滑内存使用曲线,避免瞬时峰值。
-
版本回退:在2.5版本中,发现某个PR(#40873)是导致该问题的直接原因,暂时回退该变更可以解决问题。
最佳实践建议
对于需要在生产环境中使用mmap功能的用户,建议:
- 根据数据规模合理配置节点内存,特别是查询节点
- 完整启用所有mmap参数,包括growing segment的mmap
- 监控内存使用情况,特别是加载过程中的内存峰值
- 对于特别大的数据集,考虑分批次加载或增加节点资源
- 关注Milvus版本更新,及时获取相关修复
总结
Milvus中的mmap机制虽然能有效降低内存占用,但在处理大规模数据集和多种索引类型时仍需谨慎配置。通过全面启用mmap参数、优化资源分配和加载策略,可以有效避免加载过程中的OOM问题,确保系统稳定运行。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C085
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00