Apache Arrow-RS 性能优化:PrimitiveArray 的批处理合并实现
2025-06-27 14:22:44作者:邵娇湘
在 Apache Arrow-RS 项目中,BatchCoalescer 是一个用于增量构建数组并生成最终输出的重要组件。本文将深入探讨如何通过为 PrimitiveArray 实现专门的 push_batch 方法来显著提升性能。
背景与挑战
BatchCoalescer 的核心功能是高效地将多个批次的数据合并成单个数组。当前实现中存在两种主要方式:
- 通用实现:基于
GenericInProgressArray,通过缓冲ArrayRef然后调用concat方法 - 专用实现:如
InProgressByteViewArray,针对特定数据类型进行了优化
测试表明,专用实现相比通用实现能够带来 30-50% 的性能提升,这对于大数据处理场景尤为重要。
技术实现方案
针对 PrimitiveArray 这类基础数据类型,我们可以采用更高效的实现策略:
// 伪代码展示核心思路
struct InProgressPrimitiveArray<T: NativeType> {
data: Vec<T>,
null_buffer: Option<Vec<bool>>,
// 其他必要元数据
}
impl<T: NativeType> InProgressPrimitiveArray<T> {
fn push_batch(&mut self, batch: &dyn Array) {
// 1. 直接访问底层原生数据
// 2. 批量复制到本地缓冲区
// 3. 处理空值位图
}
fn finish(self) -> PrimitiveArray<T> {
// 将缓冲数据转换为最终的 PrimitiveArray
}
}
性能优化关键点
- 内存访问优化:直接操作连续内存的原生类型数据,避免中间抽象层开销
- 批量复制:利用系统级内存复制指令提高数据传输效率
- 空值处理:并行处理空值位图,减少分支预测失败
- 内存预分配:根据输入数据大小预先分配足够内存,避免多次重分配
实际效果验证
通过项目中的基准测试工具可以验证优化效果:
cargo bench --bench coalesce_kernels
预期在 PrimitiveArray 类型上能够获得与 ByteViewArray 类似的性能提升幅度(30-50%)。
应用场景与价值
这种优化特别适用于以下场景:
- 大规模数据ETL处理
- 流式数据处理管道
- 需要低延迟响应的查询引擎
- 内存数据库的列式存储操作
通过减少数据合并操作的时间开销,可以显著提升整个数据处理管道的吞吐量。
总结
为特定数据类型实现专用合并逻辑是 Arrow 这类高性能数据处理库的常见优化手段。本文介绍的 PrimitiveArray 优化方案不仅提升了性能,也为其他数据类型的优化提供了参考模板。在实际应用中,开发者可以根据具体场景选择最适合的合并策略,在通用性和性能之间取得最佳平衡。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.26 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
262
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
77