Trulens项目中反馈函数对"I don't know"回答的处理机制分析
2025-07-01 15:10:15作者:翟江哲Frasier
在Trulens项目中,反馈函数(feedback functions)是评估AI模型响应质量的重要组件。近期社区讨论了一个有趣的现象:当模型回答"I don't know"时,系统会给予高相关性评分,即使提示中已明确包含答案信息。这一行为引发了关于如何正确评估模型响应相关性的深入思考。
反馈函数的基本工作原理
Trulens的反馈函数通过PromptResponseRelevance类来评估响应与提示的相关性。默认情况下,该系统将"I don't know"这类明确表示不知道的回答视为高度相关,评分标准认为这种响应直接解决了提示提出的问题。
问题场景分析
考虑以下典型场景:
- 提示:"我最喜欢的颜色是蓝色,我最喜欢的颜色是什么?"
- 模型响应:"我不知道"
按照当前实现,这种响应会获得1.0(满分)的相关性评分。从技术角度看,这是因为系统将"明确拒绝回答"视为一种有效的响应方式,认为模型诚实表达了其知识局限。
技术解决方案探讨
针对这一现象,项目维护者提出了两种解决方案:
-
修改默认评分标准:可以调整PromptResponseRelevance类的系统提示模板,将"I don't know"类响应从"最相关"改为"最不相关"。这种修改需要谨慎考虑其对整体评估体系的影响。
-
自定义反馈函数:更灵活的解决方案是创建自定义反馈函数。通过继承OpenAI提供者类并重写context_relevance_with_cot_reasons_extreme方法,开发者可以完全控制如何处理"I don't know"类响应。
实现建议
对于需要严格评估响应准确性的场景,建议采用自定义反馈函数方案。具体实现时应注意:
- 明确区分"不知道"和"错误回答"的评分标准
- 保持评估标准的一致性
- 考虑添加解释性注释,说明评分逻辑
总结
Trulens项目的反馈机制设计体现了在AI评估中平衡相关性与准确性的挑战。通过理解现有机制并合理使用自定义功能,开发者可以构建更符合特定场景需求的评估体系。这一案例也提醒我们,在构建AI评估系统时需要仔细考虑各种边界情况和特殊响应模式。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
703
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
681
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1