SecretFlow中基于PyTorch的Split Learning实现解析
2025-07-01 11:18:50作者:胡易黎Nicole
Split Learning技术概述
Split Learning(分割学习)是一种创新的联邦学习范式,它将深度学习模型分割成多个部分,由不同参与方分别持有和执行。这种技术特别适用于隐私保护场景,因为原始数据始终保留在数据拥有方本地,只有中间计算结果(而非原始数据)会在参与方之间传递。
SecretFlow框架中的Split Learning支持
SecretFlow作为隐私计算领域的重要框架,提供了对Split Learning的完整支持。虽然官方文档中主要展示了基于TensorFlow的实现示例,但框架同样支持使用PyTorch构建Split Learning模型。
PyTorch实现Split Learning的关键组件
在SecretFlow中实现PyTorch版的Split Learning需要构建两个核心组件:
Base Model(基础模型)
基础模型是分割后的模型部分,通常部署在数据拥有方。以下是一个典型的PyTorch基础模型实现:
import torch
import torch.nn as nn
class BaseModel(nn.Module):
def __init__(self, input_dim, hidden_dim):
super().__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.relu = nn.ReLU()
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
return x
Fuse Model(融合模型)
融合模型通常部署在计算能力较强的服务器端,负责接收各方的中间结果并进行最终计算:
class FuseModel(nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
self.fc2 = nn.Linear(input_dim, output_dim)
def forward(self, inputs):
# inputs是来自各方的中间结果列表
x = torch.cat(inputs, dim=1)
x = self.fc2(x)
return x
Split Learning工作流程
- 模型分割:将完整模型划分为基础模型和融合模型
- 本地计算:各参与方使用基础模型处理本地数据
- 中间结果传输:将基础模型的输出(而非原始数据)发送给融合模型
- 融合计算:融合模型整合各方中间结果,完成后续计算
- 梯度回传:反向传播时,梯度从融合模型传回各基础模型
实现注意事项
- 接口一致性:基础模型和融合模型的输入输出维度需要严格匹配
- 隐私保护:中间结果的传输需要结合SecretFlow的隐私保护机制
- 性能优化:合理选择分割点以平衡计算和通信开销
- 梯度处理:确保反向传播时梯度能正确回传到各基础模型
实际应用建议
对于希望使用PyTorch实现Split Learning的开发者,建议:
- 先构建完整的端到端模型并验证其性能
- 根据业务需求和安全考虑选择合适的分割点
- 使用SecretFlow提供的测试工具验证分割后的模型行为
- 逐步引入隐私保护机制,确保中间结果的安全传输
通过以上方式,开发者可以充分利用PyTorch的灵活性和SecretFlow的隐私保护能力,构建安全高效的Split Learning解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328