Retinexformer 项目使用教程
2024-09-15 10:40:10作者:柯茵沙
1. 项目目录结构及介绍
Retinexformer 项目的目录结构如下:
Retinexformer/
├── basicsr/
│ ├── __init__.py
│ ├── train.py
│ └── ...
├── Enhancement/
│ ├── __init__.py
│ ├── test_from_dataset.py
│ └── ...
├── Options/
│ ├── RetinexFormer_LOL_v1.yml
│ ├── RetinexFormer_LOL_v2_real.yml
│ └── ...
├── pretrained_weights/
│ ├── LOL_v1.pth
│ ├── LOL_v2_real.pth
│ └── ...
├── data/
│ ├── LOLv1/
│ ├── LOLv2/
│ └── ...
├── README.md
├── LICENSE.txt
├── setup.cfg
├── setup.py
└── ...
目录结构介绍
- basicsr/: 包含项目的基础代码,如训练脚本
train.py等。 - Enhancement/: 包含用于图像增强的代码,如测试脚本
test_from_dataset.py等。 - Options/: 包含项目的配置文件,如
RetinexFormer_LOL_v1.yml等。 - pretrained_weights/: 包含预训练模型的权重文件,如
LOL_v1.pth等。 - data/: 包含项目所需的数据集,如
LOLv1、LOLv2等。 - README.md: 项目的介绍文档。
- LICENSE.txt: 项目的许可证文件。
- setup.cfg 和 setup.py: 项目的安装配置文件。
2. 项目启动文件介绍
2.1 训练脚本 (train.py)
train.py 是项目的训练脚本,用于训练 Retinexformer 模型。启动训练的命令如下:
python basicsr/train.py --opt Options/RetinexFormer_LOL_v1.yml
2.2 测试脚本 (test_from_dataset.py)
test_from_dataset.py 是项目的测试脚本,用于对数据集进行测试。启动测试的命令如下:
python Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v1.yml --weights pretrained_weights/LOL_v1.pth --dataset LOL_v1
3. 项目配置文件介绍
3.1 配置文件结构
配置文件位于 Options/ 目录下,常见的配置文件包括:
RetinexFormer_LOL_v1.ymlRetinexFormer_LOL_v2_real.ymlRetinexFormer_LOL_v2_synthetic.yml
3.2 配置文件示例
以 RetinexFormer_LOL_v1.yml 为例,配置文件内容如下:
# 数据集路径
dataset_path: "data/LOLv1"
# 模型参数
model:
name: "RetinexFormer"
params:
num_layers: 12
num_heads: 8
# 训练参数
train:
batch_size: 8
num_epochs: 50
learning_rate: 0.0002
# 测试参数
test:
batch_size: 1
3.3 配置文件说明
- dataset_path: 指定数据集的路径。
- model: 定义模型的名称和参数,如
num_layers和num_heads。 - train: 定义训练时的参数,如
batch_size、num_epochs和learning_rate。 - test: 定义测试时的参数,如
batch_size。
通过以上配置文件,可以灵活地调整训练和测试的参数,以适应不同的需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
353
420
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
616
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
339
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
142
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759