【亲测免费】 PMRF项目使用与启动教程
2026-01-30 05:01:53作者:魏献源Searcher
1. 项目介绍
PMRF(Posterior-Mean Rectified Flow)是一个新颖的图片复原算法,该算法可以证明近似最优估计器,在完美的感知质量约束下最小化均方误差(MSE)。本项目是ICLR 2025会议论文的官方实现,旨在实现最小MSE的图片复原,同时保证图片的逼真度。
2. 项目快速启动
环境搭建
首先,你需要创建一个conda环境并安装所需的依赖:
conda create -n pmrf python=3.10
conda activate pmrf
conda install pytorch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 pytorch-cuda=11.8 -c pytorch -c nvidia
conda install lightning==2.3.3 -c conda-forge
pip install opencv-python==4.10.0.84 timm==1.0.8 wandb==0.17.5 lovely-tensors==0.1.16 torch-fidelity==0.3.0 einops==0.8.0 dctorch==0.1.2 torch-ema==0.3
pip install natten==0.17.1+torch230cu118 -f https://shi-labs.com/natten/wheels
pip install nvidia-cuda-nvcc-cu11
pip install basicsr==1.4.2
pip install git+https://github.com/toshas/torch-fidelity.git
pip install lpips==0.1.4
pip install piq==0.8.0
pip install huggingface_hub==0.24.5
运行示例
为了快速使用模型,我们提供了Hugging Face checkpoint。以下是一个快速运行的示例:
python inference.py \
--ckpt_path ohayonguy/PMRF_blind_face_image_restoration \
--ckpt_path_is_huggingface \
--lq_data_path /path/to/lq/images \
--output_dir /path/to/results/dir \
--batch_size 64 \
--num_flow_steps 25
如果你想要使用本地模型checkpoint,可以按以下方式运行:
python inference.py \
--ckpt_path ./checkpoints/blind_face_restoration_pmrf.ckpt \
--lq_data_path /path/to/lq/images \
--output_dir /path/to/results/dir \
--batch_size 64 \
--num_flow_steps 25
请注意,我们的盲脸图片复原模型是针对方形和对齐的脸部图片训练的。如果要复原包含多个脸部的一般内容图片,你可能需要使用我们的Hugging Face demo。
3. 应用案例和最佳实践
案例一:盲脸图片复原
使用PMRF模型进行盲脸图片复原时,可以参考以下步骤:
- 准备低质量的图片作为输入。
- 使用
inference.py脚本进行图片复原。 - 可以使用提供的Hugging Face checkpoint或本地checkpoint。
最佳实践
- 确保输入图片的尺寸符合模型训练时的尺寸要求。
- 根据具体应用场景调整
num_flow_steps参数以获得最佳效果。
4. 典型生态项目
PMRF作为图像复原领域的一个先进算法,可以与其他图像处理项目配合使用,例如:
- 使用PMRF进行图像预处理,然后输入到其他图像识别或生成模型中。
- 结合PMRF和其他图像质量评估工具,如lpips和piq,进行综合图像质量评估。
以上就是PMRF项目的基本介绍和快速启动指南。希望对你有所帮助!
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140