【亲测免费】 PMRF项目使用与启动教程
2026-01-30 05:01:53作者:魏献源Searcher
1. 项目介绍
PMRF(Posterior-Mean Rectified Flow)是一个新颖的图片复原算法,该算法可以证明近似最优估计器,在完美的感知质量约束下最小化均方误差(MSE)。本项目是ICLR 2025会议论文的官方实现,旨在实现最小MSE的图片复原,同时保证图片的逼真度。
2. 项目快速启动
环境搭建
首先,你需要创建一个conda环境并安装所需的依赖:
conda create -n pmrf python=3.10
conda activate pmrf
conda install pytorch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 pytorch-cuda=11.8 -c pytorch -c nvidia
conda install lightning==2.3.3 -c conda-forge
pip install opencv-python==4.10.0.84 timm==1.0.8 wandb==0.17.5 lovely-tensors==0.1.16 torch-fidelity==0.3.0 einops==0.8.0 dctorch==0.1.2 torch-ema==0.3
pip install natten==0.17.1+torch230cu118 -f https://shi-labs.com/natten/wheels
pip install nvidia-cuda-nvcc-cu11
pip install basicsr==1.4.2
pip install git+https://github.com/toshas/torch-fidelity.git
pip install lpips==0.1.4
pip install piq==0.8.0
pip install huggingface_hub==0.24.5
运行示例
为了快速使用模型,我们提供了Hugging Face checkpoint。以下是一个快速运行的示例:
python inference.py \
--ckpt_path ohayonguy/PMRF_blind_face_image_restoration \
--ckpt_path_is_huggingface \
--lq_data_path /path/to/lq/images \
--output_dir /path/to/results/dir \
--batch_size 64 \
--num_flow_steps 25
如果你想要使用本地模型checkpoint,可以按以下方式运行:
python inference.py \
--ckpt_path ./checkpoints/blind_face_restoration_pmrf.ckpt \
--lq_data_path /path/to/lq/images \
--output_dir /path/to/results/dir \
--batch_size 64 \
--num_flow_steps 25
请注意,我们的盲脸图片复原模型是针对方形和对齐的脸部图片训练的。如果要复原包含多个脸部的一般内容图片,你可能需要使用我们的Hugging Face demo。
3. 应用案例和最佳实践
案例一:盲脸图片复原
使用PMRF模型进行盲脸图片复原时,可以参考以下步骤:
- 准备低质量的图片作为输入。
- 使用
inference.py脚本进行图片复原。 - 可以使用提供的Hugging Face checkpoint或本地checkpoint。
最佳实践
- 确保输入图片的尺寸符合模型训练时的尺寸要求。
- 根据具体应用场景调整
num_flow_steps参数以获得最佳效果。
4. 典型生态项目
PMRF作为图像复原领域的一个先进算法,可以与其他图像处理项目配合使用,例如:
- 使用PMRF进行图像预处理,然后输入到其他图像识别或生成模型中。
- 结合PMRF和其他图像质量评估工具,如lpips和piq,进行综合图像质量评估。
以上就是PMRF项目的基本介绍和快速启动指南。希望对你有所帮助!
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
417
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
614
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758