Apache ServiceComb Java-Chassis 请求耗时统计异常问题分析
在分布式系统开发中,准确记录和监控请求耗时是性能分析和问题排查的重要依据。Apache ServiceComb Java-Chassis 作为一款优秀的微服务框架,提供了完善的请求日志功能,但在某些特殊场景下可能会出现耗时统计异常的问题。
问题现象
当使用 Java-Chassis 2.x 版本的请求日志功能时,开发者可能会发现日志中记录的请求耗时出现异常大的数值,有时甚至达到天级或几十天的级别。例如在日志中可以看到类似这样的记录:
####requestlog####: 10.93.135.178 rest - - Thu, 08 Aug 2024 20:12:40 CST "GET /provider/sayHello HTTP/2.0" 408 3026782406
其中最后的数字3026782406表示请求耗时(毫秒),这显然是不合理的。
问题根源
通过对 Java-Chassis 源代码的分析,我们发现问题的根源在于耗时统计逻辑的不完善。框架通过以下方式计算请求耗时:
public void appendClientFormattedItem(InvocationFinishEvent finishEvent, StringBuilder builder) {
builder.append((finishEvent.getInvocation().getInvocationStageTrace().getFinish() -
finishEvent.getInvocation().getInvocationStageTrace().getStartSend()) / 1000_000);
}
这里使用两个时间点的差值来计算耗时:
startSend
:表示开始发送请求的时间finish
:表示请求完成的时间
问题在于,当系统在 guardedWait 等待锁时发生超时异常,框架调用流程可能还未执行到 startSend
赋值的位置,此时 startSend
保持默认值0,而 finish
已经被赋值为当前时间戳。两者相减就会得到一个非常大的数值(当前时间戳减去0)。
技术背景
Java-Chassis 的全链路超时机制相比旧版本扩大了耗时统计的范围,这使得在某些异常情况下,框架无法正确记录请求的各个阶段时间点。特别是在以下场景中容易出现此问题:
- 系统资源紧张导致线程阻塞
- 高并发场景下的锁竞争
- 网络抖动或服务端响应缓慢
- 配置的超时时间过短
解决方案
针对这个问题,开发者可以采取以下措施:
-
框架升级:建议升级到修复此问题的版本,框架已经增加了对未初始化时间点的保护逻辑。
-
自定义日志格式:可以通过实现自定义的日志格式化类,增加对异常值的处理。
-
监控告警:建立对异常请求耗时的监控机制,及时发现并处理类似问题。
-
合理配置超时:根据实际业务场景调整 guardedWait 的超时时间,避免因配置不当导致的异常。
最佳实践
在实际开发中,建议开发者:
- 定期检查请求日志中的耗时数据,发现异常及时排查
- 在关键业务路径上增加额外的耗时监控点
- 对核心服务的耗时建立基线,设置合理的告警阈值
- 考虑使用分布式追踪系统补充框架的日志功能
总结
请求耗时统计的准确性直接影响系统性能分析和问题排查的效率。Java-Chassis 作为成熟的微服务框架,虽然在特定场景下存在耗时统计异常的问题,但通过合理的配置和使用策略,开发者完全可以规避这些问题,构建稳定可靠的微服务系统。理解框架内部的工作原理,有助于开发者更好地利用框架提供的功能,并在出现问题时快速定位和解决。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0371Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









