Excalibur引擎中Side.fromDirection方法的优化思路
2025-07-06 20:09:14作者:滑思眉Philip
背景介绍
在Excalibur游戏引擎的碰撞检测系统中,Side.fromDirection方法用于根据输入向量确定主导方向(上、下、左、右)。该方法原本的实现方式是通过计算输入向量与四个基本方向向量的点积,然后比较这些点积值来确定最接近的方向。
原始实现的问题分析
原始实现存在几个潜在的性能和精度问题:
- 计算开销大:需要对每个基本方向向量计算两次点积运算(总共8次乘法运算)
- 数值处理不严谨:使用了
-Number.MAX_VALUE作为初始最小值,这在数学上不够精确,应该使用-Infinity - 精度问题:浮点数比较可能因舍入误差导致不准确的结果
优化方案设计
通过分析向量几何特性,我们可以采用更高效的平面分区法来确定主导方向:
方案一:基于坐标比较的分区法
if (y >= x) {
if (y <= -x) return Side.Left;
return Side.Bottom;
}
if (y >= -x) return Side.Right;
return Side.Top;
这种方法将2D平面划分为四个象限,通过简单的坐标比较即可确定主导方向,避免了复杂的点积计算。
方案二:绝对值比较法
另一种更易读的实现方式来自引擎中的BoundingBox类:
if (Math.abs(x) >= Math.abs(y)) {
if (x <= 0) return Side.Left;
return Side.Right;
}
if (y <= 0) return Side.Top;
return Side.Bottom;
这种方法先比较x和y分量的绝对值大小,再根据符号确定具体方向,逻辑清晰且易于维护。
优化效果对比
- 性能提升:新方案完全避免了点积计算,只需进行简单的数值比较
- 精度改善:消除了浮点数运算可能带来的舍入误差
- 代码可读性:方案二的实现逻辑更加直观明了
- 数值处理:正确使用
-Infinity作为最小值基准
实现建议
对于游戏引擎这类性能敏感的系统,推荐采用方案二的实现方式,因为:
- 它在保持高性能的同时具有更好的可读性
- 逻辑分支更少,可能带来更好的分支预测性能
- 与引擎其他部分的代码风格更一致
- 更容易添加额外的边界条件处理
这种优化思路不仅适用于Excalibur引擎,也可以应用于其他需要快速确定向量主导方向的游戏开发场景中。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
122
149
暂无简介
Dart
579
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
345
仓颉编程语言运行时与标准库。
Cangjie
130
358
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
184
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205