在adapter-transformers项目中为Whisper模型添加适配器的技术实践
背景介绍
adapter-transformers是一个基于Hugging Face Transformers的适配器库,它允许开发者在预训练模型上高效地添加适配器模块。适配器是一种轻量级的模型微调技术,可以在保持原始模型参数不变的情况下,通过插入小型神经网络模块来适应新任务。
问题场景
在开发一个基于Whisper模型的音频分类器时,开发者遇到了为自定义Whisper分类器添加适配器的挑战。标准的WhisperAdapterModel主要针对自动语音识别(ASR)任务设计,无法直接用于音频分类场景。
技术解决方案
1. 理解适配器集成机制
要为自定义Whisper模型添加适配器,需要深入了解adapter-transformers的适配器集成机制。适配器主要通过Mixin类的方式集成到模型中,这些Mixin类提供了适配器相关的功能。
2. 自定义Whisper编码器层
首先需要创建自定义的Whisper编码器层,继承自原始WhisperEncoderLayer并添加适配器支持:
class MyWhisperEncoderLayer(WhisperEncoderLayer, WhisperEncoderLayerAdaptersMixin):
def __init__(self, config):
super().__init__(config)
self.init_adapters(config, adapters_config)
这里的关键是同时继承原始编码器层和适配器Mixin类,并在初始化时调用适配器初始化方法。
3. 构建适配器支持的编码器
接下来,使用自定义的编码器层构建完整的编码器:
class MyWhisperEncoder(WhisperEncoder):
def __init__(self, config):
super().__init__(config)
self.layers = nn.ModuleList([MyWhisperEncoderLayer(config) for _ in range(config.encoder_layers)])
这个编码器使用了我们之前定义的支持适配器的编码器层。
4. 实现音频分类模型
最后,构建完整的音频分类模型,使用我们自定义的编码器:
class MyWhisperForAudioClassification(WhisperPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.encoder = MyWhisperEncoder(config)
# 分类相关层
num_layers = config.num_hidden_layers + 1
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
self.post_init()
这个分类模型保留了Whisper的编码能力,同时添加了适配器支持,并扩展了分类功能。
关键注意事项
-
适配器配置:确保正确初始化适配器配置对象,并在编码器层中正确传递。
-
模型继承:注意多重继承的顺序和方法调用顺序,确保适配器功能正确集成。
-
参数冻结:如果需要冻结原始模型参数,只训练适配器,可以使用模型的freeze_encoder方法。
-
兼容性检查:确保自定义模型与Transformers库的其他组件兼容,特别是与Trainer类的配合使用。
实际应用
完成模型定义后,可以像使用标准Transformers模型一样使用它:
model = MyWhisperForAudioClassification.from_pretrained(model_checkpoint, config=config)
training_args = TrainingArguments(...)
trainer = Trainer(model=model, args=training_args, ...)
trainer.train()
总结
通过这种自定义方式,开发者可以在保持Whisper模型强大特征提取能力的同时,灵活地为其添加适配器支持,并针对特定任务(如音频分类)进行定制。这种方法不仅适用于Whisper模型,也可以推广到其他需要添加适配器的自定义模型场景中。
适配器技术为模型微调提供了一种高效、灵活的选择,特别适合资源有限或需要保持原始模型能力的应用场景。通过合理的架构设计,可以充分发挥适配器的优势,同时满足特定任务的需求。
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息09GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0273get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java01Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









