在adapter-transformers项目中为Whisper模型添加适配器的技术实践
背景介绍
adapter-transformers是一个基于Hugging Face Transformers的适配器库,它允许开发者在预训练模型上高效地添加适配器模块。适配器是一种轻量级的模型微调技术,可以在保持原始模型参数不变的情况下,通过插入小型神经网络模块来适应新任务。
问题场景
在开发一个基于Whisper模型的音频分类器时,开发者遇到了为自定义Whisper分类器添加适配器的挑战。标准的WhisperAdapterModel主要针对自动语音识别(ASR)任务设计,无法直接用于音频分类场景。
技术解决方案
1. 理解适配器集成机制
要为自定义Whisper模型添加适配器,需要深入了解adapter-transformers的适配器集成机制。适配器主要通过Mixin类的方式集成到模型中,这些Mixin类提供了适配器相关的功能。
2. 自定义Whisper编码器层
首先需要创建自定义的Whisper编码器层,继承自原始WhisperEncoderLayer并添加适配器支持:
class MyWhisperEncoderLayer(WhisperEncoderLayer, WhisperEncoderLayerAdaptersMixin):
def __init__(self, config):
super().__init__(config)
self.init_adapters(config, adapters_config)
这里的关键是同时继承原始编码器层和适配器Mixin类,并在初始化时调用适配器初始化方法。
3. 构建适配器支持的编码器
接下来,使用自定义的编码器层构建完整的编码器:
class MyWhisperEncoder(WhisperEncoder):
def __init__(self, config):
super().__init__(config)
self.layers = nn.ModuleList([MyWhisperEncoderLayer(config) for _ in range(config.encoder_layers)])
这个编码器使用了我们之前定义的支持适配器的编码器层。
4. 实现音频分类模型
最后,构建完整的音频分类模型,使用我们自定义的编码器:
class MyWhisperForAudioClassification(WhisperPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.encoder = MyWhisperEncoder(config)
# 分类相关层
num_layers = config.num_hidden_layers + 1
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
self.post_init()
这个分类模型保留了Whisper的编码能力,同时添加了适配器支持,并扩展了分类功能。
关键注意事项
-
适配器配置:确保正确初始化适配器配置对象,并在编码器层中正确传递。
-
模型继承:注意多重继承的顺序和方法调用顺序,确保适配器功能正确集成。
-
参数冻结:如果需要冻结原始模型参数,只训练适配器,可以使用模型的freeze_encoder方法。
-
兼容性检查:确保自定义模型与Transformers库的其他组件兼容,特别是与Trainer类的配合使用。
实际应用
完成模型定义后,可以像使用标准Transformers模型一样使用它:
model = MyWhisperForAudioClassification.from_pretrained(model_checkpoint, config=config)
training_args = TrainingArguments(...)
trainer = Trainer(model=model, args=training_args, ...)
trainer.train()
总结
通过这种自定义方式,开发者可以在保持Whisper模型强大特征提取能力的同时,灵活地为其添加适配器支持,并针对特定任务(如音频分类)进行定制。这种方法不仅适用于Whisper模型,也可以推广到其他需要添加适配器的自定义模型场景中。
适配器技术为模型微调提供了一种高效、灵活的选择,特别适合资源有限或需要保持原始模型能力的应用场景。通过合理的架构设计,可以充分发挥适配器的优势,同时满足特定任务的需求。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00