Turing.jl中predict函数行为变更与正确使用方法解析
2025-07-04 12:01:58作者:范靓好Udolf
问题背景
在使用Turing.jl进行贝叶斯建模时,predict函数的行为和语法近期发生了变化,这引起了一些用户的困惑。本文将详细解释这一变更,并提供正确的使用方法。
predict函数的新行为
在最新版本的Turing.jl中,predict函数的行为变得更加严格和明确。当用户尝试使用predict函数生成预测时,必须确保预测条件与模型拟合时的条件完全一致。
典型错误场景
一个常见的错误场景是在混合效应模型中,用户可能在拟合模型时使用了一部分数据,而在预测时尝试使用包含更多组别的数据。例如:
- 拟合模型时使用了1个参与者的数据
- 预测时尝试对25个参与者进行预测
这种不一致会导致predict函数返回所有参数而不仅仅是预测变量,因为系统检测到有新的随机效应变量需要处理。
正确使用方法
要正确使用predict函数,需要遵循以下原则:
- 数据一致性:确保预测时使用的数据结构与拟合时完全一致,包括组别数量和顺序
- 参数过滤:如果需要只获取特定变量的预测,可以使用链式操作过滤结果
- 条件语法:推荐使用更明确的conditioning语法,如
model | (y = ...)
模型构建建议
在构建模型时,还应注意以下最佳实践:
- 避免使用
truncated(Normal(), 0, Inf)这样的语法,推荐使用truncated(Normal(), lower=0) - 在调试阶段可以使用
Prior()采样器代替NUTS()以加快运行速度 - 对于大型模型,可以先在小数据集上测试预测功能
示例代码
# 正确的使用方式示例
model = demo() | (y = observed_data)
chain = sample(model, NUTS(), 1000)
predictions = predict(demo(), chain) # 使用相同模型结构
总结
Turing.jl的predict函数变得更加严格是为了保证统计推断的正确性。理解这一变更背后的原理,并遵循一致性的数据使用原则,可以避免大多数预测相关的问题。对于混合效应模型等复杂场景,特别要注意分组变量的完整性。
通过遵循这些准则,用户可以充分利用Turing.jl强大的预测功能,同时确保结果的统计有效性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134