OpenCompass 评估大模型时遇到的OOM问题分析与解决方案
问题背景
在使用OpenCompass对Qwen2-72B-Instruct模型进行MMLU基准测试时,评估过程中出现了CUDA内存不足(OOM)的问题。这个问题在评估"high_school_european_history"子集时尤为明显,系统尝试分配1.42GiB内存时失败,而此时GPU1上仅有1.26GiB空闲内存。
问题分析
从错误日志可以看出几个关键点:
-
内存使用情况:两块80GiB显存的GPU中,GPU1已经使用了77.87GiB,其中PyTorch分配了74.22GiB,还有3.15GiB是PyTorch保留但未分配的。
-
评估过程:评估已经成功完成了多个MMLU子集(如computer_security、microeconomics、law等),但在评估high_school_european_history时失败。
-
内存管理:错误信息建议设置PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True来避免内存碎片问题。
根本原因
-
批量大小过大:OpenCompass默认的batch size为8,对于72B参数的大模型来说,这个批量大小可能导致显存需求过高。
-
内存碎片:长时间运行的评估过程可能导致显存碎片化,即使总空闲显存足够,也可能无法分配连续的大块内存。
-
模型规模:Qwen2-72B-Instruct作为720亿参数的大模型,单次推理就需要大量显存,特别是在处理较长的输入序列时。
解决方案
1. 调整批量大小
最直接的解决方案是减小批量大小。可以通过修改配置文件或命令行参数来设置更小的batch size,例如:
# 在配置中设置
infer_cfg = dict(
batch_size=4, # 或更小
...
)
2. 优化内存管理
可以尝试以下内存优化策略:
-
设置环境变量来减少内存碎片:
export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True -
在评估间隙手动清理显存:
import torch torch.cuda.empty_cache() import gc gc.collect()
3. 使用更高效的评估策略
- 分块评估:将大型数据集分成更小的块进行评估。
- 梯度检查点:如果支持,可以启用梯度检查点来减少内存使用。
- 量化评估:使用4位或8位量化模型进行评估。
4. 硬件配置优化
- 确保使用足够多的GPU卡进行并行评估。
- 考虑使用具有更高显存的GPU设备。
- 使用NVLink连接多块GPU以提高显存利用率。
最佳实践建议
-
渐进式调整:从较小的batch size开始测试,逐步增加直到找到最优值。
-
监控显存使用:在评估过程中实时监控显存使用情况,可以使用
nvidia-smi或PyTorch的内存分析工具。 -
评估顺序优化:将内存需求较大的评估任务安排在评估过程的早期进行,此时显存碎片较少。
-
日志记录:详细记录每次评估的显存使用情况,便于后续分析和优化。
总结
OpenCompass评估大型语言模型时遇到OOM问题是常见现象,特别是像Qwen2-72B-Instruct这样的超大规模模型。通过合理配置批量大小、优化内存管理和评估策略,可以有效解决这类问题。关键在于找到评估效率和内存使用之间的平衡点,确保评估过程既高效又稳定。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00