MMsegmentation框架下的大模型训练技术解析
2025-05-26 11:39:40作者:薛曦旖Francesca
背景概述
MMsegmentation作为计算机视觉领域知名的图像分割框架,在处理大规模模型时经常会遇到显存不足的问题。本文将深入探讨如何在该框架下实现高效的大模型训练,特别是通过Deepspeed集成和参数优化技术来解决显存瓶颈。
核心解决方案
MMsegmentation基于MMEngine实现了对大模型训练的支持,主要提供了两种关键技术路径:
-
Deepspeed集成方案
- 支持Zero优化器(包括Zero1/2/3不同阶段)
- 支持激活检查点(activation checkpointing)
- 支持梯度累积
-
FSDP(完全分片数据并行)
- 模型参数分片存储
- 按需通信机制
- 自动内存优化
技术实现要点
在MMsegmentation中实现大模型训练需要注意以下关键点:
-
配置文件设置 需要在配置文件中显式启用大模型训练模式,并指定具体的优化策略。典型的配置包括:
- 选择优化器类型(Zero或FSDP)
- 设置分片策略
- 配置通信参数
-
内存优化技巧
- 梯度检查点技术可显著降低显存占用
- 混合精度训练结合内存优化
- 动态分片策略调整
-
训练流程适配
- 数据加载器需要配合分片策略
- 验证阶段的内存特殊处理
- 模型保存与恢复的兼容性
最佳实践建议
对于MMsegmentation用户,在处理大模型时推荐:
- 从小规模配置开始测试,逐步增加模型规模
- 监控显存使用情况,调整分片粒度
- 合理设置batch size与梯度累积步数
- 注意验证阶段的显存管理策略
性能考量
使用这些大模型训练技术时,需要在以下几个方面进行权衡:
- 计算效率与显存占用的平衡
- 通信开销与分片粒度的关系
- 训练稳定性与收敛速度
通过合理配置,可以在有限显存条件下成功训练大规模分割模型,同时保持较好的训练效率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135